ترغب بنشر مسار تعليمي؟ اضغط هنا

230 - M. Castro , F. DAmico , J. Braga 2014
Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$thinspace$sim 50${thinspace}keV and optical depth around 1. Previous spectral studies of 1E{thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modeled by a more detailed Comptonization scheme. Furthermore, we find the presence of an iron K-edge absorption feature in one occasion, which confirms what had been previously observed by Suzaku. Our broadband analysis of this limited sample shows a rich spectral variability in 1E{thinspace}1740.7$-$2942 at the low/hard state, and we address the possible causes of these variations. More simultaneous soft/hard X-ray observations of this system and other black-hole binaries would be very helpful in constraining the Comptonization scenario and shedding more light on the physics of these systems.
We determine the age and mass of the three best solar twin candidates in open cluster M67 through lithium evolutionary models. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva ev olution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. We obtained a very accurate estimation of the mass of our solar analogs in M67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87+0.55-0.66 Gyr, which is better constrained than former estimates. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M67 has a solar age within the errors, validating its use as a solar proxy. M67 is an important cluster when searching for solar twins.
We analyse Spitzer images of 30 long-duration gamma-ray burst (GRB) host galaxies. We estimate their total stellar masses (M*) based on the rest-frame K-band luminosities (L_Krest) and constrain their star formation rates (SFRs, not corrected for dus t extinction) based on the rest-frame UV continua. Further, we compute a mean M*/L_Krest = 0.45 Msun/Lsun. We find that the hosts are low M*, star-forming systems. The median M* in our sample (<M*> = 10^9.7 Msun) is lower than that of field galaxies (e.g., Gemini Deep Deep Survey). The range spanned by M* is 10^7 Msun < M* < 10^11 Msun, while the range spanned by the dust-uncorrected UV SFR is 10^-2 Msun yr^-1 < SFR < 10 Msun yr^-1. There is no evidence for intrinsic evolution in the distribution of M* with redshift. We show that extinction by dust must be present in at least 25% of the GRB hosts in our sample and suggest that this is a way to reconcile our finding of a relatively lower UV-based, specific SFR (PHI = SFR/M*) with previous claims that GRBs have some of the highest PHI values. We also examine the effect that the inability to resolve the star-forming regions in the hosts has on PHI.
Aims. Exoplanet-host stars (EHS) are known to present superficial chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for co ol stars, lithium is more depleted in EHS than in NEHS. The aim of this paper is to obtain constraints on possible models able to explain this difference, in the framework of overmetallic models compared to models with solar abundances. Methods. We have computed main sequence stellar models with various masses and metallicities. The results show different behaviour for the lithium destruction according to those parameters. We compare these results to the spectroscopic observations of lithium. Results. Our models show that the observed lithium differences between EHS and NEHS are not directly due to the overmetallicity of the EHS: some extra mixing is needed below the convective zones. We discuss possible explanations for the needed extra mixing, in particular an increase of the mixing efficiency associated with the development of shear instabilities below the convective zone, triggered by angular momentum transfer due to the planetary migration.
Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.
Using detailed spectral energy distribution fits we present evidence that submillimeter- and radio-bright gamma-ray burst host galaxies are hotter counterparts to submillimeter galaxies. This hypothesis makes them of special interest since hotter sub mm galaxies are difficult to find and are believed to contribute significantly to the star formation history of the Universe.
We present detailed fits of the spectral energy distributions (SEDs) of four submillimeter (submm) galaxies selected by the presence of a gamma-ray burst (GRB) event (GRBs 980703, 000210, 000418 and 010222). These faint ~3 mJy submm emitters at redsh ift ~1 are characterized by an unusual combination of long- and short-wavelength properties, namely enhanced submm and/or radio emission combined with optical faintness and blue colors. We exclude an active galactic nucleus as the source of long-wavelength emission. From the SED fits we conclude that the four galaxies are young (ages <2 Gyr), highly starforming (star formation rates ~150 MSun/yr), low-mass (stellar masses ~10^10 MSun) and dusty (dust masses ~3x10^8 MSun). Their high dust temperatures (Td>45 K) indicate that GRB host galaxies are hotter, younger, and less massive counterparts to submm-selected galaxies detected so far. Future facilities like Herschel, JCMT/SCUBA-2 and ALMA will test this hypothesis enabling measurement of dust temperatures of fainter GRB-selected galaxies.
We present a general formalism which allows us to derive the evolution equations describing one-dimensional (1D) and isotropic 2D interfacelike systems, that is based on symmetries, conservation laws, multiple scale arguments, and exploits the releva nce of coarsening dynamics. Our approach becomes especially significant in the presence of surface morphological instabilities and allows us to classify the most relevant nonlinear terms in the continuum description of these systems. The formalism applies to systems ranging from eroded nanostructures to macroscopic pattern formation. In particular, we show the validity of the theory for novel experiments on ion plasma erosion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا