ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot GRB-selected Submillimeter Galaxies

63   0   0.0 ( 0 )
 نشر من قبل Micha{\\l} Jerzy Micha{\\l}owski
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using detailed spectral energy distribution fits we present evidence that submillimeter- and radio-bright gamma-ray burst host galaxies are hotter counterparts to submillimeter galaxies. This hypothesis makes them of special interest since hotter submm galaxies are difficult to find and are believed to contribute significantly to the star formation history of the Universe.

قيم البحث

اقرأ أيضاً

We present detailed fits of the spectral energy distributions (SEDs) of four submillimeter (submm) galaxies selected by the presence of a gamma-ray burst (GRB) event (GRBs 980703, 000210, 000418 and 010222). These faint ~3 mJy submm emitters at redsh ift ~1 are characterized by an unusual combination of long- and short-wavelength properties, namely enhanced submm and/or radio emission combined with optical faintness and blue colors. We exclude an active galactic nucleus as the source of long-wavelength emission. From the SED fits we conclude that the four galaxies are young (ages <2 Gyr), highly starforming (star formation rates ~150 MSun/yr), low-mass (stellar masses ~10^10 MSun) and dusty (dust masses ~3x10^8 MSun). Their high dust temperatures (Td>45 K) indicate that GRB host galaxies are hotter, younger, and less massive counterparts to submm-selected galaxies detected so far. Future facilities like Herschel, JCMT/SCUBA-2 and ALMA will test this hypothesis enabling measurement of dust temperatures of fainter GRB-selected galaxies.
57 - D. T. Frayer 2003
We report on deep near-infrared (NIR) observations of submillimeter-selected galaxies (SMGs) with the Near Infrared Camera (NIRC) on the Keck I telescope. We have identified K-band candidate counterparts for 12 out of 15 sources in the SCUBA Cluster Lens Survey. Three SMGs remain non-detections with K-band limits of K>23 mag, corrected for lensing. Compensating for lensing we find a median magnitude of K=22+/-1 mag for the SMG population, but the range of NIR flux densities spans more than a factor of 400. For SMGs with confirmed counterparts based on accurate positions from radio, CO, and/or millimeter continuum interferometric observations, the median NIR color is J-K=2.6+/-0.6 mag. The NIR-bright SMGs (K<19 mag) have colors of J-K =~ 2 mag, while the faint SMGs tend to be extremely red in the NIR (J-K>3 mag). We argue that a color selection criterion of J-K>~3 mag can be used to help identify counterparts of SMGs that are undetected at optical and radio wavelengths. The number density of sources with J-K>3 mag is 5 arcmin^{-2} at K<22.5 mag, greater than that of SMGs with S(850um)>2 mJy. It is not clear if the excess represents less luminous infrared-bright galaxies with S(850um)<~2 mJy, or if the faint extremely red NIR galaxies represent a different population of sources that could be spatially related to the SMGs.
We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of WISE-selected, hyperluminous galaxies, so called W1W2-dropout galaxies. This is a rare (~ 1000 all-sky) population of galaxies at high redshift (peaks at z=2-3), that a re faint or undetected by WISE at 3.4 and 4.6 um, yet are clearly detected at 12 and 22 um. The optical spectra of most of these galaxies show significant AGN activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350 to 850 um, with 9 detections; and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 um, as well as optical spectra of 12 targets are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submm ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10^{13} Lsun. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the Universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1mm selected sources in the COSMOS F ield, for which we obtain six reliable (peak S/N>5 or peak S/N>4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N>4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric followup. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology - including the nature of submillimeter galaxies with multiple radio counterparts and constraints on the physical scale of the far infrared - of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim submillimeter galaxies that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation - which struggle to account for such objects even under liberal assumptions - and dust production models given the limited time since the Big Bang.
High-redshift, dust-obscured galaxies -- selected to be luminous in the radio but relatively faint at 850um -- appear to represent a different population from the ultra-luminous submillimeter- (submm-) bright population. They may be star-forming gala xies with hotter dust temperatures or they may have lower far-infrared luminosities and larger contributions from obscured active galactic nuclei (AGN). Here we present observations of three z~2 examples of this population, which we term submm-faint radio galaxies (SFRGs) in CO(3-2) using the IRAM Plateau de Bure Interferometer to study their gas and dynamical properties. We estimate the molecular gas mass in each of the three SFRGs (8.3x10^{9} M_odot, <5.6x10^{9} M_odot and 15.4x10^{9} M_odot, respectively) and, in the case of RG163655, a dynamical mass by measurement of the width of the CO(3-2) line (8x10^{10} csc^2i M_odot). While these gas masses are substantial, on average they are 4x lower than submm-selected galaxies (SMGs). Radio-inferred star formation rates (<SFR_radio>=970 M_odotyr) suggest much higher star-formation efficiencies than are found for SMGs, and shorter gas depletion time scales (~11 Myr), much shorter than the time required to form their current stellar masses (~160 Myr; ~10^{11} M_odot). By contrast, SFRs may be overestimated by factors of a few, bringing the efficiencies in line with those typically measured for other ultraluminous star-forming galaxies and suggesting SFRGs are more like ultraviolet- (UV-)selected star-forming galaxies with enhanced radio emission. A tentative detection of rga at 350um suggests hotter dust temperatures -- and thus similar gas-to-dust mass fractions -- as the SMGs. We conclude that SFRGs radio luminosities are larger than would naturally scale from local ULIRGs given their gas masses or gas fractions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا