ترغب بنشر مسار تعليمي؟ اضغط هنا

In recent years, gas has been observed in an increasing number of debris discs, though its nature remains to be determined. Here, we analyse CO molecular excitation in optically thin debris discs, and search ALMA Cycle-0 data for CO J=3-2 emission in the Fomalhaut ring. No significant line emission is observed; we set a 3-$sigma$ upper limit on the integrated line flux of 0.16 Jy km s$^{-1}$. We show a significant dependency of the CO excitation on the density of collisional partners $n$, on the gas kinetic temperature $T_k$ and on the ambient radiation field $J$, suggesting that assumptions widely used for protoplanetary discs (e.g. LTE) do not necessarily apply to their low density debris counterparts. When applied to the Fomalhaut ring, we consider a primordial origin scenario where H$_2$ dominates collisional excitation of CO, and a secondary origin scenario dominated by e$^-$ and H$_2$O. In either scenario, we obtain a strict upper limit on the CO mass of 4.9 $times$ 10$^{-4}$ M$_{oplus}$. This arises in the non-LTE regime, where the excitation of the molecule is determined solely by the well-known radiation field. In the secondary scenario, assuming any CO present to be in steady state allows us to set an upper limit of $sim$55% on the CO/H$_2$O ice ratio in the parent planetesimals. This could drop to $sim$3% if LTE applies, covering the range observed in Solar System comets (0.4-30%). Finally, in light of our analysis, we present prospects for CO detection and characterisation in debris discs with ALMA.
ALMA Cycle 0 and Herschel PACS observations are reported for the prototype, nearest, and brightest example of a dusty and polluted white dwarf, G29-38. These long wavelength programs attempted to detect an outlying, parent population of bodies at 1-1 00 AU, from which originates the disrupted planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L = 0.039. No associated emission sources were detected in any of the data down to L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g for reasonable grain sizes and properties in orbital regions corresponding to evolv
We have analyzed Spitzer and NASA/IRTF 2 - 35 mum spectra of the warm, ~350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 pm 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ~3 AU from the cent ral star, in the systems Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10^18 kg of 0.1 - 100 mum warm dust is present in a collisional equilibrium distribution with dn/da ~ a^-3.5, the equivalent of a 130 km radius KBO of 1.0 g/cm^3 density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the systems lifetime and preserved it in deep freeze at ~150 AU. At ~1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km/sec with a rocky planetary body of mass leq MEarth at ~3 AU, delivering large amounts of water (>0.1% of MEarths Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.
127 - J. S. Greaves , M. C. Wyatt 2010
Numerous nearby FGK dwarfs possess discs of debris generated by collisions among comets. Here we fit the levels of dusty excess observed by Spitzer at 70$umu$m and show that they form a rather smooth distribution. Taking into account the transition o f the dust removal process from collisional to Poynting-Robertson drag, all the stars may be empirically fitted by a single population with many low-excess members. Within this ensemble, the Kuiper Belt is inferred to be such a low-dust example, among the last 10% of stars, with a small cometary population. Analogue systems hosting gas giant planets and a modest comet belt should occur for only a few per cent of Sun-like stars, and so terrestrial planets with a comparable cometary impact rate to the Earth may be uncommon. The nearest such analogue system presently known is HD154345 at 18pc, but accounting for survey completeness, a closer example should lie at around 10pc.
69 - J.-F. Lestrade 2009
Although 70 % of the stars in the Galaxy are M-dwarfs, thermal emission searches for cold debris disks have been conducted mostly for A-type and solar-type stars. We report on new lambda=1.2 mm continuum observations of thirty M-dwarfs, using the MAM BO-2 bolometer array camera at the IRAM 30m telescope. For a statistical analysis, we combine these data with our prior SCUBA and MAMBO-2 observations of 20 other M-dwarfs. Our total sample divides in M-dwarfs in moving groups, with relatively young ages, and in nearby M-dwarfs with unknown ages. Only one cold debris disk (GJ842.2) was detected significantly. We compare the implied disk abundance constraints with those found in two comparable submillimeter surveys of 10 to 190 Myr old A- and FGK-type stars. For the 19 youngest (ages less than 200 Myr) M-dwarfs in our sample, we derive a cold disk fraction of 5.3^{+10.5}_{-5.0} %, compared to 15 +/-11.5 % for FGK-stars and 22^{+33}_{-20} % for A-stars. Hence, for this age group, there is an apparent trend of fewer cold disks for later stellar types, i.e., lower star masses. Although its statistical significance is marginal, this trend is strengthened by the deeper sensitivity of observations in the M-dwarf sample. We derive a cold disk fraction of < 10 % for the older (likely a few Gyr) M-dwarfs in our sample. Finally, although inconclusively related to a debris disk, we present the complex millimeter structure found around the position of the M1.5 dwarf GJ526 in our sample.
An unbiased search for debris discs around nearby Sun-like stars is reported. Thirteen G-dwarfs at 12-15 parsecs distance were searched at 850 $umu$m wavelength, and a disc is confirmed around HD 30495. The estimated dust mass is 0.008 M$_{oplus}$ wi th a net limit $la 0.0025$ M$_{oplus}$ for the average disc of the other stars. The results suggest there is not a large missed population of substantial cold discs around Sun-like stars -- HD 30495 is a bright rather than unusually cool disc, and may belong to a few hundred Myr-old population of greater dust luminosity. The far-infared and millimetre survey data for Sun-like stars are well fitted by either steady state or stirred models, provided that typical comet belts are comparable in size to that in the Solar System.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا