ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we use the formalism of chord functions (emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained.
We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states (where initial single mode compression is $z_0$) provided the two mode squeezing $r_0$ satisfies $0 < r_0 < 1/2 log (cosh (2 z_0)).$ We also give the analytical expressions for the time of ESD. Finally, we show the relation between the single modes initial impurities and the initial entanglement, where we exhibit that the later is suppressed by the former.
We propose a strategies not only to protect but also to enhance and revive the entanglement in a double Jaynes-Cummings model. We show that such surprising features arises when Zeno-like measurements are performed during the dynamical process.
We show that the well known geometric phase, the Gouy phase in optics can be defined for matter waves in vacuum as well. In particular we show that the underlying physics for the matter waves Gouy phase is the generalized Schroedinger-Robertson uncer tainty principle, more specifically, the off diagonal elements of the covariance matrix. Recent experiments involving the diffraction of fullerene molecules and the uncertainty principle are shown to be quantitatively consistent with the existence of a Gouy phase for matter waves.
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_ mu$ when radiative corrections are considered. Both the study of the odd and even parity sectors of the complete vacuum polarization tensor at one-loop order and a non-perturbative analysis show that this symmetry must be preserved by the quantum corrections. As a complement we obtain that transversality of the polarization tensor does not fix the value of the coefficient of the induced CS term.
The dissipative dynamics of Gaussian squeezed states (GSS) and coherent superposition states (CSS) are analytically obtained and compared. Time scales for sustaining different quantum properties such as squeezing, negativity of the Wigner function or photon number distribution are calculated. Some of these characteristic times also depend on initial conditions. For example, in the particular case of squeezing, we find that while the squeezing of CSS is only visible for small enough values of the field intensity, in GSS it is independent of this quantity, which may be experimentally advantageous. The asymptotic dynamics however is quite similar as revealed by the time evolution of the fidelity between states of the two classes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا