ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) We aim at identifying the least massive population of the solar metallicity, young (120 Myr), nearby (133.5 pc) Pleiades star cluster with the ultimate goal of understanding the physical properties of intermediate-age, free-floating, low-m ass brown dwarfs and giant planetary-mass objects, and deriving the cluster substellar mass function across the deuterium-burning mass limit at ~0.012 Msol. We performed a deep photometric and astrometric J- and H-band survey covering an area of ~0.8 deg^2. The images with completeness and limiting magnitudes of J,H ~ 20.2 and ~ 21.5 mag were acquired ~9 yr apart (proper motion precision of +/-6 mas/yr). J- and H-band data were complemented with Z, K, and mid-infrared magnitudes up to 4.6 micron coming from UKIDSS, WISE, and follow-up observations of our own. Pleiades member candidates were selected to have proper motions compatible with that of the cluster, and colors following the known Pleiades sequence in the interval J = 15.5-8.8 mag, and Z_UKIDSS - J > 2.3 mag or Z nondetections for J > 18.8 mag. We found a neat sequence of astrometric and photometric Pleiades substellar member candidates in the intervals J = 15.5-21.2 mag and ~0.072-0.008 Msol. The faintest objects show very red near- and mid-infrared colors exceeding those of field high-gravity dwarfs by >0.5 mag. The Pleiades photometric sequence does not show any color turn-over because of the presence of photospheric methane absorption down to J = 20.3 mag, which is about 1 mag fainter than predicted by the color-computed models. Pleiades brown dwarfs have a proper motion dispersion of 6.4-7.5 mas/yr and are dynamically relaxed at the age of the cluster. The Pleiades mass function extends down to the deuterium burning-mass threshold, with a slope fairly similar to that of other young star clusters and stellar associations.
We present a study of age-related spectral signatures observed in 25 young low-mass objects that we have previously determined as possible kinematic members of five young moving groups: the Local Association (Pleiades moving group, age=20 - 150 Myr), the Ursa Major group (Sirius supercluster, age=300 Myr), the Hyades supercluster (age=600 Myr), IC 2391 supercluster (age=35--55 Myr) and the Castor moving group (age=200 Myr). In this paper we characterize the spectral properties of observed high or low resolution spectra of our kinematic members by fitting theoretical spectral distributions. We study signatures of youth, such as lithium {sc i} 6708 AA, H$alpha$ emission and other age-sensitive spectroscopic signatures in order to confirm the kinematic memberships through age constraints. We find that 21 ($84%$) targets show spectroscopic signatures of youth in agreement with the age ranges of the moving group to which membership is implied. For two further objects, age-related constraints remain difficult to determine from our analysis. In addition, we confirm two moving group kinematic candidates as brown dwarfs.
Here we present the study of FR Cnc, a young, active and spotted star. We performed analysis of ASAS-3 (The All Sky Automated Survey) data for the years 2002-2008 and amended the value of the rotational period to be 0.826518 d. The amplitude of photo metric variations decreased abruptly in the year 2005, while the mean brightness remained the same, which was interpreted as a quick redistribution of spots. BVRc and Ic broad band photometric calibration was performed for 166 stars in FR Cnc vicinity. The photometry at Terskol Observatory shows two brightening episodes, one of which occurred at the same phase as the flare of 2006 November 23. Polarimetric BVR observations indicate the probable presence of a supplementary source of polarization. We monitored FR Cnc spectroscopically during the years 2004-2008. We concluded that the RV changes cannot be explained by the binary nature of FR Cnc. We determined the spectral type of FR Cnc as K7V. Calculated galactic space-velocity components (U, V, W) indicate that FR Cnc belongs to the young disc population and might also belong to the IC 2391 moving group. Based on LiI 6707.8 measurement, we estimated the age of FR Cnc to be between 10-120 Myr. Doppler Tomography was applied to create a starspot image of FR Cnc. We optimized the goodness of fit to the deconvolved profiles for axial inclination, equivalent width and v sin i, finding v sin i=46.2 km s^-1 and i=55 degrees. The starspot distribution of FR Cnc is also of interest since it is one of the latest spectral types to have been imaged. No polar spot was detected on FR Cnc.
Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood which may be used to investigate different aspects of the formation and evolution of the solar neighborhood in te rms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF ECHELLE package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line 6707.8 angstroms and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in 6708 angstroms. Fluxes in the chromospheric emission lines and RHK are also determined for each observation of star in the sample. We used these data to investigate the emission levels of our stars. The study of the Halpha emission line revealed the presence of two different populations of chromospheric emitters in the sample, clearly separated in the log F(Halpha)/Fbol - (V-J) diagram.
We associate 132 low-mass ultracool dwarfs in the southern hemisphere as candidate members of five moving groups using photometric and astrometric selection techniques. Of these objects, we present high resolution spectroscopy for seven candidates an d combine these with previous measurements from the literature to determine spectral types and radial velocities. We thus constrain distance and space motion spectroscopically, allowing the kinematic membership of the moving groups to be assessed. Possible membership of moving groups has allowed ages and metallicities to be constrained for these objects and evolutionary models have been used to estimate their mass. We estimate that up to ~75 of our candidate moving group members should be genuine, and discuss future work that will confirm and exploit this major new sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا