ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for southern ultracool dwarfs in young moving groups

121   0   0.0 ( 0 )
 نشر من قبل James Clarke
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We associate 132 low-mass ultracool dwarfs in the southern hemisphere as candidate members of five moving groups using photometric and astrometric selection techniques. Of these objects, we present high resolution spectroscopy for seven candidates and combine these with previous measurements from the literature to determine spectral types and radial velocities. We thus constrain distance and space motion spectroscopically, allowing the kinematic membership of the moving groups to be assessed. Possible membership of moving groups has allowed ages and metallicities to be constrained for these objects and evolutionary models have been used to estimate their mass. We estimate that up to ~75 of our candidate moving group members should be genuine, and discuss future work that will confirm and exploit this major new sample.



قيم البحث

اقرأ أيضاً

We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence members of nearby young moving groups with Magellan Adaptive Optics (MagAO) and identify 27 binaries with instantaneous projected separation as small as 40 mas. 15 were previou sly unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw multiplicity rate of at least $35^{+5}_{-4}%$ for this population. In the separation range of roughly 1 - 300 AU in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least $24^{+5}_{-4}%$ for binaries resolved by the MagAO infrared camera (Clio). The M-star sub-sample of 87 stars yields a raw multiplicity of at least $30^{+5}_{-4}%$ over all separations, $21^{+5}_{-4}%$ for secondary companions resolved by Clio from 1 to 300 AU ($23^{+5}_{-4}%$ for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that multiplicity fraction as a function of mass and age over the range of 0.2 to 1.2 $M_odot$ and 10 - 200 Myr appears to be linearly flat in both parameters and across YMGs. This suggests that multiplicity rates are largely set by 100 Myr without appreciable evolution thereafter. After bias corrections are applied, the multiplicity fraction of low-mass YMG members ($< 0.6 M_odot$) is in excess of the field.
71 - C. Lynch , T. Murphy , V. Ravi 2016
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 incre asing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1 - 2)$R_*$, magnetic field inclination 20$^{circ}$ - 80$^{circ}$, field strength $sim$10 - 200 G, and power-law electron density $sim$10$^4$ - 10$^8$ cm$^{-3}$. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Guedel-Benz relation by more than two orders of magnitude.
We report the discovery of twenty-one hitherto unknown bright southern ultracool dwarfs with spectral types in the range M7 to L5.5, together with new observations of a further three late M dwarfs previously confirmed. Three more objects are already identified in the literature as high proper motion stars;we derive their spectral types for the first time. All objects were selected from the 2MASS All Sky and SuperCOSMOS point source databases on the basis of their optical/near-infrared colours, $J$-band magnitudes and proper motions. Low resolution (R $sim$ 1000) $JH$ spectroscopy with the ESO/NTT SOFI spectrograph has confirmed the ultracool nature of 24 targets, out of a total of 25 candidates observed. Spectral types are derived by direct comparison with template objects and compared to results from H$_2$O and FeH indices. We also report the discovery of one binary, as revealed by SOFI acquisition imaging; spectra were taken for both components. The spectral types of the two components are L2 and L4 and the distance $sim$ 19 pc. Spectroscopic distances and transverse velocities are derived for the sample. Two $sim$ L5 objects lie only $sim$ 10 pc distant. Such nearby objects are excellent targets for further study to derive their parallaxes and to search for fainter, later companions with AO and/or methane imaging.
Substellar members of young ($lesssim$150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions wi th optical$-$IR photometry from PS1, 2MASS and $textit{WISE}$ to search for substellar members of the AB Dor Moving Group within $approx$50 pc and with spectral types of late-M to early-L, corresponding to masses down to $approx$30 M$_{Jup}$ at the age of the group ($approx$125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6$-$L4; $approx$30$-$100 M$_{Jup}$) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our $approx$125 Myr objects, neither their $J-K$ nor $W1-W2$ colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.
We present a detailed study of the kinematics of M dwarfs in the CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) input catalog. We have selected all M dwarfs with known par allactic distance or a good photometric distance estimation, precise proper motion in the literature or as determined by us, and radial velocity measurements. Using these parameters, we computed the M dwarfs galactic space motions (U, V, W). For the stars with U and V velocity components inside or near the boundaries that determine the young disk population, we have analyzed the possible membership in the classical moving groups and nearby loose associations with ages between 10 and 600 Ma. For the candidate members, we have compiled information available in the literature in order to constrain their membership by applying other age-dating methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا