ترغب بنشر مسار تعليمي؟ اضغط هنا

This letter reports on a new procedure for the lattice spacing setting that takes advantage of the very precise determination of the strong coupling in Taylor scheme. Although it can be applied for the physical scale setting with the experimental val ue of $Lambda_{overline{rm MS}}$ as an input, the procedure is particularly appropriate for relative calibrations. The method is here applied for simulations with four degenerate light quarks in the sea and leads to prove that their physical scale is compatible with the same one for simulations with two light and two heavy flavours.
We present a lattice calculation of the renormalized running coupling constant in symmetric (MOM) and asymmetric ($widetilde{rm MOM}$) momentum substraction schemes including $u$, $d$, $s$ and $c$ quarks in the sea. An Operator Product Expansion domi nated by the dimension-two $langle A^2rangle$ condensate is used to fit the running of the coupling. We argue that the agreement in the predicted $langle A^2rangle$ condensate for both schemes is a strong support for the validity of the OPE approach and the effect of this non-gauge invariant condensate over the running of the strong coupling.
Gluon and ghost propagators data, obtained in Landau gauge from lattice simulations with two light and two heavy dynamical quark flavours ($N_f$=2+1+1), are described here with a running formula including a four-loop perturbative expression and a non perturbative OPE correction dominated by the local operator $A^2$. The Wilson coefficients and their variation as a function of the coupling constant are extracted from the numerical data and compared with the theoretical expressions that, after being properly renormalized, are known at ${cal O}(alpha^4)$. As also $Lambda_{msbar}$ is rather well known for $N_f$=2+1+1, this allows for a precise consistency test of the OPE approach in the joint description of different observables.
We report on an estimate of alpha_s, renormalised in the MSbar scheme at the tau and Z^0 mass scales, by means of lattice QCD. Our major improvement compared to previous lattice calculations is that, for the first time, no perturbative treatment at t he charm threshold has been required since we have used statistical samples of gluon fields built by incorporating the vacuum polarisation effects of u/d, s and c sea quarks. Extracting alpha_s in the Taylor scheme from the lattice measurement of the ghost-ghost-gluon vertex, we obtain alpha_s^{MSbar}(m^2_Z)=0.1200(14) and alpha_s^{MSbar}(m^2_tau)=0.339(13).
We present results on the electroweak form factors and on the lower moments of parton distributions of the nucleon, within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Results are obtained on lattices with three differ ent values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined by comparing results on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized non-perturbatively and the values are given in the MS-scheme at a scale mu=2 GeV.
We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalisation constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit.
136 - C. Alexandrou 2011
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off eff ects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
179 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a re investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا