ترغب بنشر مسار تعليمي؟ اضغط هنا

The high Curie temperature multiferroic compound, CuO, has a quasidegenerate magnetic ground state that makes it prone to manipulation by the so called ``order-by-disorder mechanism. First principle computations supplemented with Monte Carlo simulati ons and experiments show that isovalent doping allows to stabilize the multiferroic phase in non-ferroelectric regions of the pristine material phase-diagram with experiments reaching a 250% widening of the ferroelectric temperature window with 5% of Zn doping. Our results allow to validate the importance of a quasidegenerate ground state on promoting multiferroicity on CuO at high temperatures and open a path to the material engineering of new multiferroic materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا