ترغب بنشر مسار تعليمي؟ اضغط هنا

Several authors have reported that the dynamical masses of massive compact galaxies ($M_star gtrsim 10^{11} mathrm{M_odot}$, $r_mathrm{e} sim 1 mathrm{kpc}$), computed as $M_mathrm{dyn} = 5.0 sigma_mathrm{e}^2 r_mathrm{e} / G$, are lower than thei r stellar masses $M_star$. In a previous study from our group, the discrepancy is interpreted as a breakdown of the assumption of homology that underlie the $M_mathrm{dyn}$ determinations. Here, we present new spectroscopy of six redshift $z approx 1.0$ massive compact ellipticals from the Extended Groth Strip, obtained with the 10.4 m Gran Telescopio Canarias. We obtain velocity dispersions in the range $161-340 mathrm{km s^{-1}}$. As found by previous studies of massive compact galaxies, our velocity dispersions are lower than the virial expectation, and all of our galaxies show $M_mathrm{dyn} < M_star$ (assuming a Salpeter initial mass function). Adding data from the literature, we build a sample covering a range of stellar masses and compactness in a narrow redshift range $mathit{z approx 1.0}$. This allows us to exclude systematic effects on the data and evolutionary effects on the galaxy population, which could have affected previous studies. We confirm that mass discrepancy scales with galaxy compactness. We use the stellar mass plane ($M_star$, $sigma_mathrm{e}$, $r_mathrm{e}$) populated by our sample to constrain a generic evolution mechanism. We find that the simulations of the growth of massive ellipticals due to mergers agree with our constraints and discard the assumption of homology.
For many massive compact galaxies, their dynamical masses ($M_mathrm{dyn} propto sigma^2 r_mathrm{e}$) are lower than their stellar masses ($M_star$). We analyse the unphysical mass discrepancy $M_star / M_mathrm{dyn} > 1$ on a stellar-mass-selected sample of early-type galaxies ($M_star gtrsim 10^{11} mathrm{M_odot}$) at redshifts $z sim 0.2$ to $z sim 1.1$. We build stacked spectra for bins of redshift, size and stellar mass, obtain velocity dispersions, and infer dynamical masses using the virial relation $M_mathrm{dyn} equiv K sigma_mathrm{e}^2 r_mathrm{e} / G$ with $K = 5.0$; this assumes homology between our galaxies and nearby massive ellipticals. Our sample is completed using literature data, including individual objects up to $z sim 2.5$ and a large local reference sample from the Sloan Digital Sky Survey (SDSS). We find that, at all redshifts, the discrepancy between $M_star$ and $M_mathrm{dyn}$ grows as galaxies depart from the present-day relation between stellar mass and size: the more compact a galaxy, the larger its $M_star / M_mathrm{dyn}$. Current uncertainties in stellar masses cannot account for values of $M_star / M_mathrm{dyn}$ above 1. Our results suggest that the homology hypothesis contained in the $M_mathrm{dyn}$ formula above breaks down for compact galaxies. We provide an approximation to the virial coefficient $K sim 6.0 left[ r_mathrm{e} / (3.185 mathrm{kpc}) right]^{-0.81} left[ M_star / (10^{11} mathrm{M_odot}) right]^{0.45}$, which solves the mass discrepancy problem. A rough approximation to the dynamical mass is given by $M_mathrm{dyn} sim left[ sigma_mathrm{e} / (200 mathrm{km s^{-1}}) right]^{3.6} left[ r_mathrm{e} / (3 mathrm{kpc}) right]^{0.35} 2.1 times 10^{11} mathrm{M_odot}$.
122 - C. Lopez-Sanjuan 2009
Aims: We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries, and add ress three main sources of systematic errors: (i) we explicitly apply morphological K-corrections, (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift, and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m(z) = f_m(0) (1+z)^m, we find that m = 1.8 +/- 0.5 for M_B <= -20 galaxies, while m = 5.4 +/- 0.4 for M_star >= 10^10 M_Sun galaxies. When we translate our merger fractions to merger rates (R_m), their evolution, parameterized as R_m(z) = R_m(0) (1+z)^n, is quite similar in both cases: n = 3.3 +/- 0.8 and n = 3.5 +/- 0.4, respectively. Conclusions: Our results imply that only ~8% of todays M_star >= 10^10 M_Sun galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~21% of this mass galaxies at z ~ 1 have undergone one of these mergers since z ~ 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_star >= 10^10 M_Sun galaxies since z ~ 1, but may be an important process at z > 1.
We aim to define a sample of intermediate-z disk galaxies harbouring central bulges, and a complementary sample of disk galaxies without measurable bulges. We intend to provide colour profiles for both samples, as well as measurements of nuclear, dis k, and global colours, which may be used to constrain the relative ages of bulges and disks. We select a diameter-limited sample of galaxies in images from the HST/WFPC2 Groth Strip survey, which is divided into two subsamples of higher and lower inclination to assess the role of dust in the measures quantities. Mergers are visually identified and excluded. We take special care to control the pollution by ellipticals. The bulge sample is defined with a criterion based on nuclear surface brightness excess over the inward extrapolation of the exponential law fitted to the outer regions of the galaxies. We extract colour profiles on the semi-minor axis least affected by dust in the disk, and measure nuclear colours at 0.85 kpc from the centre over those profiles. Disk colours are measured on major axis profiles; global colours are obtained from 2.6-diameter apertures. We obtain a parent sample containing 248 galaxies with known redshifts, spectroscopic or photometric, spanning 0.1 < z < 1.2. The bulge subsample comprises 54 galaxies (21.8% of the total), while the subsample with no measureable bulges is 55.2% of the total (137 galaxies). The remainder (23%) is composed of mergers. We list nuclear, disk, and global colours (observed and restframe) and magnitudes (apparent and absolute), as well as galaxy colour gradients for the samples with and without bulges. We also provide images, colour maps, plots of spectral energy distributions, major-axis surface brightness profiles, and minor-axis colour profiles for both samples.
The determination of galaxy merger fraction of field galaxies using automatic morphological indices and photometric redshifts is affected by several biases if observational errors are not properly treated. Here, we correct these biases using maximum likelihood techniques. The method takes into account the observational errors to statistically recover the real shape of the bidimensional distribution of galaxies in redshift - asymmetry space, needed to infer the redshift evolution of galaxy merger fraction. We test the method with synthetic catalogs and show its applicability limits. The accuracy of the method depends on catalog characteristics such as the number of sources or the experimental error sizes. We show that the maximum likelihood method recovers the real distribution of galaxies in redshift and asymmetry space even when binning is such that bin sizes approach the size of the observational errors. We provide a step-by-step guide to applying maximum likelihood techniques to recover any one- or bidimensional distribution subject to observational errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا