ﻻ يوجد ملخص باللغة العربية
For many massive compact galaxies, their dynamical masses ($M_mathrm{dyn} propto sigma^2 r_mathrm{e}$) are lower than their stellar masses ($M_star$). We analyse the unphysical mass discrepancy $M_star / M_mathrm{dyn} > 1$ on a stellar-mass-selected sample of early-type galaxies ($M_star gtrsim 10^{11} mathrm{M_odot}$) at redshifts $z sim 0.2$ to $z sim 1.1$. We build stacked spectra for bins of redshift, size and stellar mass, obtain velocity dispersions, and infer dynamical masses using the virial relation $M_mathrm{dyn} equiv K sigma_mathrm{e}^2 r_mathrm{e} / G$ with $K = 5.0$; this assumes homology between our galaxies and nearby massive ellipticals. Our sample is completed using literature data, including individual objects up to $z sim 2.5$ and a large local reference sample from the Sloan Digital Sky Survey (SDSS). We find that, at all redshifts, the discrepancy between $M_star$ and $M_mathrm{dyn}$ grows as galaxies depart from the present-day relation between stellar mass and size: the more compact a galaxy, the larger its $M_star / M_mathrm{dyn}$. Current uncertainties in stellar masses cannot account for values of $M_star / M_mathrm{dyn}$ above 1. Our results suggest that the homology hypothesis contained in the $M_mathrm{dyn}$ formula above breaks down for compact galaxies. We provide an approximation to the virial coefficient $K sim 6.0 left[ r_mathrm{e} / (3.185 mathrm{kpc}) right]^{-0.81} left[ M_star / (10^{11} mathrm{M_odot}) right]^{0.45}$, which solves the mass discrepancy problem. A rough approximation to the dynamical mass is given by $M_mathrm{dyn} sim left[ sigma_mathrm{e} / (200 mathrm{km s^{-1}}) right]^{3.6} left[ r_mathrm{e} / (3 mathrm{kpc}) right]^{0.35} 2.1 times 10^{11} mathrm{M_odot}$.
We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mer
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular
In this study we demonstrate that stellar masses of galaxies (Mstar) are universally correlated through a double power law function with the product of the dynamical velocities (Ve) and sizes to one-fourth power (Re^0.25) of galaxies, both measured a
We use the SPARC (Spitzer Photometry & Accurate Rotation Curves) database to study the relation between the central surface density of stars Sstar and dynamical mass Sdyn in 135 disk galaxies (S0 to dIrr). We find that Sdyn correlates tightly with Ss
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshift