ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - M. Avrigeanu , V. Avrigeanu , 2011
An analysis of the $^{231}$Pa$(d,3n)$$^{230}$U reaction excitation function at energies around the Coulomb barrier has taken into account the pre-equilibrium and compound-nucleus cross sections corrected for the deuteron-breakup decrease of the total reaction cross section, as well as the inelastic breakup enhancement. The analysis reveals the dominance of the deuteron breakup mechanism unlike a former assessment in this respect of the deuteron-induced fission process.
330 - M. Avrigeanu , V. Avrigeanu 2011
We show that the model analysis of new measured (d,p), (d,t), (6He,5He), and (6He,4He) reaction cross sections at incident energies around the Coulomb barrier (J. Phys. G: Nucl. Part. Phys. 38 (2011) 035106) led to results that are not consistent wit h similar calculated and evaluated data. On the other hand, it should be corrected by taking into account the direct processes.
193 - M. Avrigeanu 2008
A previously derived semi-microscopic analysis based on the Double Folding Model, for alpha-particle elastic scattering on A~100 nuclei at energies below 32 MeV, is extended to medium mass A ~ 50-120 nuclei and energies from ~13 to 50 MeV. The energy -dependent phenomenological imaginary part for this semi-microscopic optical model potential was obtained including the dispersive correction to the microscopic real potential, and used within a concurrent phenomenological analysis of the same data basis. A regional parameter set for low-energy alpha-particles entirely based on elastic-scattering data analysis was also obtained for nuclei within the above-mentioned mass and energy ranges. Then, an ultimate assessment of (alpha,gamma), (alpha,n) and (alpha,p) reaction cross sections concerned target nuclei from 45Sc to 118Sn and incident energies below ~12 MeV. The former diffuseness of the real part of optical potential as well as the surface imaginary-potential depth have been found responsible for the actual difficulties in the description of these data, and modified in order to obtain an optical potential which describe equally well both the low energy elastic-scattering and induced-reaction data of alpha-particles.
271 - M. Avrigeanu 2007
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا