ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear resonant inelastic x-ray scattering on quartz structured 57FePO4 as a function of pressure, up to 8 GPa reveals hardening of the low-energy phonons under applied pressures up to 1.5 GPa, followed by a large softening at 1.8 GPa upon approachi ng the phase transition pressure of ~2 GPa. The pressure-induced phase transitions in quartz-structured compounds have been predicted to be related to a soft phonon mode at the Brillouin-zone boundary (1/3, 1/3, 0) and to the break-down of the Born-stability criteria. Our results provide the first experimental evidence of this predicted phonon softening.
279 - X.S. Xu , M. Angst , T.V. Brinzari 2008
We investigated the series of temperature and field-driven transitions in LuFe$_2$O$_4$ by optical and M{o}ssbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in th is multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the order by fluctuation mechanism for the development of charge order superstructure. Bragg splitting and large magneto optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field.
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
We present single-crystal neutron diffraction measurements on multiferroic LuFe2O4 showing phase transitions at 240 and 175 K. Magnetic reflections are observed below each transition indicating that the magnetic interactions in LuFe2O4 are 3-dimensio nal (3D) in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. While 3D magnetic correlations persists below 175 K, a significant broadening of the magnetic peaks is observed along with the build up of a diffuse component to the magnetic scattering.
The temperature dependence of charge order in Fe2OBO3 was investigated by resistivity and differential scanning calorimetry measurements, Mossbauer spectroscopy, and synchrotron x-ray scattering, revealing an intermediate phase between room temperatu re and 340 K, characterized by coexisting mobile and immobile carriers, and by incommensurate superstructure modulations with temperature-dependent propagation vector (1/2,0,tau). The incommensurate modulations arise from specific anti-phase boundaries with low energy cost due to geometrical charge frustration.
Solution-grown single crystals of Fe2OBO3 were characterized by specific heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific heat at 340 K indicates the onset of charge order. Evidence for a doubling of the unit cell at low te mperature is presented. Combining structural refinement of diffraction data and Mossbauer spectra, domains with diagonal charge order are established. Bond-valence-sum analysis indicates integer valence states of the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest example of ionic charge order so far.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا