ترغب بنشر مسار تعليمي؟ اضغط هنا

The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.
The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, an d the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.
A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possi ble signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, $rm Phi_{ u_{mu}+bar{ u}_mu}$, and the velocity averaged annihilation cross-section, $rm <sigma_{A}v>$, are derived for the WIMP self-annihilation channels into $rm bbar{b},W^{+}W^{-},tau^{+}tau^{-},mu^{+}mu^{-}, ubar{ u}$. The ANTARES limits for $rm <sigma_{A}v>$ are shown to be the most stringent for a neutrino telescope over the WIMP masses $rm 25,GeV < M_{WIMP} < 10,TeV$.
If $mathscr{J}$ is a finite-dimensional nilpotent algebra over a finite field $Bbbk$, the algebra group $P = 1+mathscr{J}$ admits a (standard) supercharacter theory as defined by Diaconis and Isaacs. If $mathscr{J}$ is endowed with an involution $wid ehat{varsigma}$, then $widehat{varsigma}$ naturally defines a group automorphism of $P = 1+mathscr{J}$, and we may consider the fixed point subgroup $C_{P}(widehat{varsigma}) = {xin P : widehat{varsigma}(x) = x^{-1}}$. Assuming that $Bbbk$ has odd characteristic $p$, we use the standard supercharacter theory for $P$ to construct a supercharacter theory for $C_{P}(widehat{varsigma})$. In particular, we obtain a supercharacter theory for the Sylow $p$-subgroups of the finite classical groups of Lie type, and thus extend in a uniform way the construction given by Andre and Neto for the special case of the symplectic and orthogonal groups.
The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most e nergetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope.The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons --- and hence their neutrino progenitors --- from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin.Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653$-$329 and 1714$-$336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than $-2.4$.
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates RA=$-$46.8$^{circ}$ and Dec=$-$64.9$^{circ}$ and corresponds to a 2.2$sigma$ background fluctuation. In addition, upper limits on the flux normalization of an E$^{-2}$ muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of 7 events relatively close to the Galactic Centre in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E$^{-2}$ energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1$times$10$^{-8}$ GeV$,$cm$^{-2}$s$^{-1}$, depending on the exact location of the source.
This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino cand idate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.
Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. Since none of the searches has produced a statistically significant signal, upper limits on the neutrino fluences are derived and compared to the predictions from theoretical models.
66 - J.-M. Andre 2011
We use the Kramers-Kronig transform (KKT) with logarithmic kernel to obtain the reflection phase and, subsequently, the complex refractive index of a bulk mirror from reflectance. However, there remains some confusion regarding the formulation for th is analysis. Assuming the damped Drude model for the dielectric constant and the oblique incidence case, we calculate the additional terms: phase at zero frequency and Blashke factor and we propose a reformulated KKT within this model. Absolute reflectance in the s-polarization case of a gold film is measured between 40 and 350 eV for various glancing angles using synchrotron radiation and its complex refractive index is deduced using the reformulated KKT that we propose. The results are discussed with respect to the data available in the literature.
67 - K. Le Guen 2011
We study the introduction of a third material, namely Zr, within a nanometric periodic Mg/Co structure designed to work as optical component in the extreme UV (EUV) spectral range. Mg/Co, Mg/Zr/Co, Mg/Co/Zr and Mg/Zr/Co/Zr multilayers are designed, t hen characterized in terms of structural quality and optical performances through X-ray and EUV reflectometry measurements respectively. For the Mg/Co/Zr structure, the reflectance value is equal to 50% at 25.1 nm and 45deg of grazing incidence and reaches 51.3% upon annealing at 200deg C. Measured EUV reflectivity values of tri-layered systems are discussed in terms of material order within a period and compared to the predictions of the theoretical model of Larruquert. Possible applications are pointed out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا