ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an adva nced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network with the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detections of gravitational waves and to opening a new observation window on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.
The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series $h(t)$ from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the $h(t)$ signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed $h(t)$ signal and the associated uncertainties. The uncertainties of the $h(t)$ time series are estimated to be 8% in amplitude. The uncertainty of the phase of $h(t)$ is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 $mu$s at high frequency. A bias lower than $4,mathrm{mu s}$ and depending on the sky direction of the GW is also present.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا