ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced Virgo: a 2nd generation interferometric gravitational wave detector

146   0   0.0 ( 0 )
 نشر من قبل Gianluca Gemme
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network with the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detections of gravitational waves and to opening a new observation window on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.



قيم البحث

اقرأ أيضاً

The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirrors thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17,K and 18,K. The detector sensitivity, which was limited by the mirrors thermal fluctuation at room temperature, was improved in the frequency range of 90,Hz to 240,Hz by cooling the mirrors. The improved sensitivity reached a maximum of $2.2 times 10^{-19},textrm{m}/sqrt{textrm{Hz}}$ at 165,Hz.
168 - T. Akutsu , M. Ando , K. Arai 2018
The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordi nated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an L, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRAs design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRAs first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate.
372 - Kentaro Somiya 2011
Construction of the Japanese second-generation gravitational-wave detector KAGRA has been started. In the next 6 sim 7 years, we will be able to observe the space-time ripple from faraway galaxies. KAGRA is equipped with the latest advanced technolog ies. The entire 3-km long detector is located in the underground to be isolated from the seismic motion, the core optics are cooled down to 20 K to reduce thermal fluctuations, and quantum non-demolition techniques are used to decrease quantum noise. In this paper, we introduce the detector configuration of KAGRA; its design, strategy, and downselection of parameters.
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (sc alar) GW modes and spin-1 (vector) modes, especially with an expected network of Advanced LIGO, Advanced Virgo and KAGRA. For two independent null streams for four non-co-aligned GW detectors, we study a location on the sky, exactly at which the spin-0 modes of GWs vanish in any null stream for the GW detector network, though the strain output at a detector may contain the spin-0 modes. Our numerical calculations show that there exist seventy sky positions that satisfy this condition of killing the spin-0 modes in the null streams. If a GW source with an electromagnetic counterpart is found in one of the seventy sky positions, the spin-1 modes will be testable separately from the spin-0 modes by the null stream method. In addition, we study a superposition of the two null streams to show that any one of the three modes (one combined spin-0 and two spin-1 modes) can be eliminated by suitably adjusting a weighted superposition of the null streams and thereby a set of the remaining polarization modes can be experimentally tested.
Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second generation ground based gravitational wave detectors. Reshaping the beam to a flatter wider profile which probes more of the mirror surface re duces this noise. The Mesa beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle alpha and beam width D. Varying alpha allows a continuous transition from the nearly-flat to the nearly-concentric Mesa beam configurations. We analytically prove that in the limit of infinite D hyperboloidal beams become Gaussians. The Advanced LIGO diffraction loss design constraint is 1 ppm per bounce. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudo-spectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For the Mesa beam a local minimum occurs at D = 10.67 cm and leads to a diffraction loss of 1.4 ppm. We find that if one requires a diffraction loss of strictly 1 ppm, the alpha = 0.91 pi hyperboloidal beam is optimal, leading to the coating thermal noise being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D parameter and lower the coating noise by about 30% compared to the original Mesa configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا