ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the evolution of close binary systems formed by a normal (solar composition), intermediate mass donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These non-standard ingredients deeply modify the mass transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long standing mass transfer episodes, models including these effect suffer a number cycles of mass transfer and detachment. During mass transfer the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when detached they behave as a binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have a radius slightly smaller than its Roche lobe. Remarkably, these conditions are attained for orbital period and donor mass values in the range corresponding to a family of binary radio pulsars known as redbacks. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of sim million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disc surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in-between as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such {it quasi - Roche Lobe Overflow} states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods $mathrm{P_{i}<1}$ day evolve into redbacks. Some of them produce low mass HeWDs, and a subgroup with shorter $mathrm{P_{i}}$ become black widows (BWs). Thus, BWs descent from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring that BW pulsars are very massive ($mathrm{gtrsim 2; M_{odot}}$). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.
The most recent member of the millisecond pulsar with very low-mass companions and short orbital periods class, PSR J1311-3430 (Pletsch et al. 2012) is a remarkable object in various senses. Besides being the first discovered in gamma-rays, its measu red features include the very low or absent hydrogen content. We show in this Letter that this important piece of information leads to a very restricted range of initial periods for a given donor mass. For that purpose, we calculate in detail the evolution of the binary system self-consistently, including mass transfer and evaporation, finding the features of the new evolutionary path leading to the observed configuration. It is also important to remark that the detailed evolutionary history of the system naturally leads to a high final pulsar mass, as it seems to be demanded by observations.
In close binary systems composed of a normal, donor star and an accreting neutron star, the amount of material received by the accreting component is, so far, a real intrigue. In the literature there are available models that link the accretion disk surrounding the neutron star with the amount of material it receives, but there is no model linking the amount of matter lost by the donor star to that falling onto the neutron star. In this paper we explore the evolutionary response of these close binary systems when we vary the amount of material accreted by the neutron star. We consider a parameter beta, which represents the fraction of material lost by the normal star that can be accreted by the neutron star. beta is considered as constant throughout evolution. We have computed the evolution of a set of models considering initial donor star masses (in solar units) between 0.5 and 3.50, initial orbital periods (in days) between 0.175 and 12, initial masses of neutron stars (in solar units) of 0.80, 1.00, 1.20 and 1.40 and several values of beta. We assumed solar abundances. These systems evolve to ultracompact or to open binary systems, many of which form low mass helium white dwarfs. We present a grid of calculations and analyze how these results are affected upon changes in the value of beta. We find a weak dependence of the final donor star mass with respect to beta. In most cases this is also true for the final orbital period. The most sensitive quantity is the final mass of the accreting neutron star. As we do not know the initial mass and rotation rate of the neutron star of any system, we find that performing evolutionary studies is not helpful for determining beta.
We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00, and 3.50 solar masses, whereas for the accreting neutron star we consider initial masses values of 0.8, 1.0, 1.2, and 1.4 solar masses. The considered initial orbital period interval ranges from 0.5 to 12 days. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period-white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period-mass relation based on our own calculations is proposed, which is in good agreement with period-mass relations available in the literature. As consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437-4715.
It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, t he typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar interior, this procedure should be suitable for exploring the departure of the cooling process from that predicted by the standard treatment. We find that the Bose-Einstein condensation has noticeable, but not dramatic effects on the cooling process only for the most massive white dwarfs compatible with a helium dominated interior (approx 0.50 M_odot) and very low luminosities (say, Log(L/L_odot) < -4.0). These facts lead us to conclude that it seems extremely difficult to find observable signals of the Bose-Einstein condensation. Recently, it has been suggested that the population of helium white dwarfs detected in the globular cluster NGC 6397 is a good candidate for detecting signals of the Bose-Einstein condensation. We find that these stars have masses too low and are too bright to have an already condensed interior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا