ترغب بنشر مسار تعليمي؟ اضغط هنا

A theoretical investigation of photoabsorption and photoionization of Fe^{14+} extending beyond an earlier frame transformation R-matrix implementation is performed using a fully-correlated, Breit-Pauli R-matrix formulation including both fine-struct ure splitting of strongly-bound resonances and radiation damping. The radiation damping of $2prightarrow nd$ resonances gives rise to a resonant photoionization cross section that is significantly lower than the total photoabsorption cross section. Furthermore, the radiation-damped photoionization cross section is found to be in good agreement with recent experimental results once a global shift in energy of $approx -3.5$ eV is applied. These findings have important implications. Firstly, the presently available synchrotron experimental data are applicable only to photoionization processes and not to photoabsorption; the latter is required in opacity calculations. Secondly, our computed cross section, for which the L-shell ionization threshold is aligned with the NIST value, shows a series of $2p rightarrow nd$ Rydberg resonances that are uniformly 3-4 eV higher in energy than the corresponding experimental profiles, indicating that the L-shell threshold energy values currently recommended by NIST are likely in error.
The spectrum from the black hole X-ray transient GRO J1655-40. obtained using the $Chandra$ High Energy Transmission Grating (HETG) in 2005 is notable as a laboratory for the study of warm absorbers, and for the presence of many lines from odd-$Z$ el ements between Na and Co (and Ti and Cr) not previously observed in X-rays. We present synthetic spectral models which can be used to constrain these element abundances and other parameters describing the outflow from the warm absorber in this object. We present results of fitting to the spectrum using various tools and techniques, including automated line fitting, phenomenological models, and photoionization modeling. We show that the behavior of the curves of growth of lines from H-like and Li-like ions indicate that the lines are either saturated or affected by filling-in from scattered or a partially covered continuum source. We confirm the conclusion of previous work by cite{Mill06} and cite{Mill08} which shows that the ionization conditions are not consistent with wind driving due to thermal expansion. The spectrum provides the opportunity to measure abundances for several elements not typically observable in the X-ray band. These show a pattern of enhancement for iron peak elements, and solar or sub-solar values for elements lighter than calcium. Models show that this is consistent with enrichment by a core-collapse supernova. We discuss the implications these values for the evolutionary history of this system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا