ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new $ u_murightarrow u_e$, $ u_murightarrow u_mu$, $overline{ u}_murightarrowoverline{ u}_e$, and $overline{ u}_murightarrowoverline{ u}_mu$ oscillation measurements by the NOvA experiment, with a 50% increase in neutrino-mode beam exposur e over the previously reported results. The additional data, combined with previously published neutrino and antineutrino data, are all analyzed using improved techniques and simulations. A joint fit to the $ u_e$, $ u_mu$, $overline{ u}_e$, and $overline{ u}_mu$ candidate samples within the 3-flavor neutrino oscillation framework continues to yield a best-fit point in the normal mass ordering and the upper octant of the $theta_{23}$ mixing angle, with $Delta m^{2}_{32} = (2.41pm0.07)times 10^{-3}$ eV$^2$ and $sin^2theta_{23} = 0.57^{+0.03}_{-0.04}$. The data disfavor combinations of oscillation parameters that give rise to a large asymmetry in the rates of $ u_e$ and $overline{ u}_e$ appearance. This includes values of the CP-violating phase in the vicinity of $delta_text{CP} = pi/2$ which are excluded by $>3sigma$ for the inverted mass ordering, and values around $delta_text{CP} = 3pi/2$ in the normal ordering which are disfavored at 2$sigma$ confidence.
A search is performed for supernova-like neutrino interactions coincident with 76 gravitational wave events detected by the LIGO/Virgo Collaboration. For 40 of these events, full readout of the time around the gravitational wave is available from the NOvA Far Detector. For these events, we set limits on the fluence of the sum of all neutrino flavors of $F < 7(4)times 10^{10}mathrm{cm}^{-2}$ at 90% C.L. assuming energy and time distributions corresponding to the Garching supernova models with masses 9.6(27)$mathrm{M}_odot$. Under the hypothesis that any given gravitational wave event was caused by a supernova, this corresponds to a distance of $r > 29(50)$kpc at 90% C.L. Weaker limits are set for other gravitational wave events with partial Far Detector data and/or Near Detector data.
This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 km and 810 km from the beam source, is analyzed using an exposure of $12.51times10^{20}$ protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of $121$ of neutral-current candidates are observed at the Far Detector, compared to a prediction of $122pm11$(stat.)$pm15$(syst.) assuming mixing between three active flavors. No evidence for $bar{ u}_{mu}rightarrowbar{ u}_{s}$ oscillation is observed. Interpreting this result within a 3+1 model, constraints are placed on the mixing angles ${theta}_{24} < 25^{circ}$ and ${theta}_{34} < 32^{circ}$ at the 90% C.L. for $0.05$eV$^{2} leq Delta m^{2}_{41} leq 0.5$eV$^{2}$, the range of mass splittings that produces no significant oscillations at the Near Detector. These are the first 3+1 confidence limits set using long-baseline accelerator antineutrinos.
We report the rate of cosmic ray air showers with multiplicities exceeding 15 muon tracks recorded in the NOvA Far Detector between May 2016 and May 2018. The detector is located on the surface under an overburden of 3.6 meters water equivalent. We o bserve a seasonal dependence in the rate of multiple-muon showers, which varies in magnitude with multiplicity and zenith angle. During this period, the effective atmospheric temperature and surface pressure ranged between 210 K to 230 K and 940mbar to 990mbar, respectively; the shower rates are anti-correlated with the variation in the effective temperature. The variations are about 30% larger for the highest multiplicities than the lowest multiplicities and 20% larger for showers near the horizon than vertical showers.
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South Dakota. The long-baseline physics sensitivity calculations presented in the DUNE Physics TDR, and in a related physics paper, rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the near and far detectors, fully automated event reconstruction and neutrino classification, and detailed implementation of systematic uncertainties. The purpose of this posting is to provide a simplified summary of the simulations that went into this analysis to the community, in order to facilitate phenomenological studies of long-baseline oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration describing the far detector reconstruction and selection performance are included as ancillary files to this posting. A simple analysis using these configurations in GLoBES produces sensitivity that is similar, but not identical, to the official DUNE sensitivity. DUNE welcomes those interested in performing phenomenological work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.
We report a search for a magnetic monopole component of the cosmic-ray flux in a 95-day exposure of the NOvA experiments Far Detector, a 14 kt segmented liquid scintillator detector designed primarily to observe GeV-scale electron neutrinos. No event s consistent with monopoles were observed, setting an upper limit on the flux of $2times 10^{-14} mathrm{cm^{-2}s^{-1}sr^{-1}}$ at 90% C.L. for monopole speed $6times 10^{-4} < beta < 5times 10^{-3}$ and mass greater than $5times 10^{8}$ GeV. Because of NOvAs small overburden of 3 meters-water equivalent, this constraint covers a previously unexplored low-mass region.
The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNEs sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collaps e supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNEs ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass hierarchy to a precision of 5$sigma$, for all $delta_{mathrm{CP}}$ values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$sigma$ (5$sigma$) after an exposure of 5 (10) years, for 50% of all $delta_{mathrm{CP}}$ values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $sin^{2} 2theta_{13}$ to current reactor experiments.
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural netw ork has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to $CP$-violating effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا