ﻻ يوجد ملخص باللغة العربية
The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNEs sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
The MiniBooNE Experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the $Delta m^2$~1 eV$^2$ region of the sterile neutrino hypothesis by observing $ u_e$ ($b
All experimental measurements of particle physics today are beautifully described by the Standard Model. However, there are good reasons to believe that new physics may be just around the corner at the TeV energy scale. This energy range is currently
Current long-baseline neutrino-oscillation experiments such as NO$ u$A and T2K are mainly sensitive to physics in the neighbourhood of the first oscillation maximum of the $ u_mu to u_e$ oscillation probability. The future Deep Underground Neutrino
The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known and we have el
The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERNs accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future coll