ترغب بنشر مسار تعليمي؟ اضغط هنا

A matrix $A$ is totally positive (or non-negative) of order $k$, denoted $TP_k$ (or $TN_k$), if all minors of size $leq k$ are positive (or non-negative). It is well-known that such matrices are characterized by the variation diminishing property tog ether with the sign non-reversal property. We do away with the former, and show that $A$ is $TP_k$ if and only if every submatrix formed from at most $k$ consecutive rows and columns has the sign non-reversal property. In fact this can be strengthened to only consider test vectors in $mathbb{R}^k$ with alternating signs. We also show a similar characterization for all $TN_k$ matrices - more strongly, both of these characterizations use a single vector (with alternating signs) for each square submatrix. These characterizations are novel, and similar in spirit to the fundamental results characterizing $TP$ matrices by Gantmacher-Krein [Compos. Math. 1937] and $P$-matrices by Gale-Nikaido [Math. Ann. 1965]. As an application, we study the interval hull $mathbb{I}(A,B)$ of two $m times n$ matrices $A=(a_{ij})$ and $B = (b_{ij})$. This is the collection of $C in mathbb{R}^{m times n}$ such that each $c_{ij}$ is between $a_{ij}$ and $b_{ij}$. Using the sign non-reversal property, we identify a two-element subset of $mathbb{I}(A,B)$ that detects the $TP_k$ property for all of $mathbb{I}(A,B)$ for arbitrary $k geq 1$. In particular, this provides a test for total positivity (of any order), simultaneously for an entire class of rectangular matrices. In parallel, we also provide a finite set to test the total non-negativity (of any order) of an interval hull $mathbb{I}(A,B)$.
The emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the vertices $i$ and $j$ in $G$. We consider a weighted tree $T$ on $n$ vertices with edge weights are square matrix of same size. Th e distance $d_{ij}$ between the vertices $i$ and $j$ is the sum of the weight matrices of the edges in the unique path from $i$ to $j$. In this article we establish a characterization for the trees in terms of rank of (matrix) weighted Laplacian matrix associated with it. Then we establish a necessary and sufficient condition for the distance matrix $D$, with matrix weights, to be invertible and the formula for the inverse of $D$, if it exists. Also we study some of the properties of the distance matrices of matrix weighted trees in connection with the Laplacian matrices, g-inverses and eigenvalues.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا