ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign non-reversal property for totally non-negative and totally positive matrices, and testing total positivity of their interval hull

66   0   0.0 ( 0 )
 نشر من قبل Apoorva Khare
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A matrix $A$ is totally positive (or non-negative) of order $k$, denoted $TP_k$ (or $TN_k$), if all minors of size $leq k$ are positive (or non-negative). It is well-known that such matrices are characterized by the variation diminishing property together with the sign non-reversal property. We do away with the former, and show that $A$ is $TP_k$ if and only if every submatrix formed from at most $k$ consecutive rows and columns has the sign non-reversal property. In fact this can be strengthened to only consider test vectors in $mathbb{R}^k$ with alternating signs. We also show a similar characterization for all $TN_k$ matrices - more strongly, both of these characterizations use a single vector (with alternating signs) for each square submatrix. These characterizations are novel, and similar in spirit to the fundamental results characterizing $TP$ matrices by Gantmacher-Krein [Compos. Math. 1937] and $P$-matrices by Gale-Nikaido [Math. Ann. 1965]. As an application, we study the interval hull $mathbb{I}(A,B)$ of two $m times n$ matrices $A=(a_{ij})$ and $B = (b_{ij})$. This is the collection of $C in mathbb{R}^{m times n}$ such that each $c_{ij}$ is between $a_{ij}$ and $b_{ij}$. Using the sign non-reversal property, we identify a two-element subset of $mathbb{I}(A,B)$ that detects the $TP_k$ property for all of $mathbb{I}(A,B)$ for arbitrary $k geq 1$. In particular, this provides a test for total positivity (of any order), simultaneously for an entire class of rectangular matrices. In parallel, we also provide a finite set to test the total non-negativity (of any order) of an interval hull $mathbb{I}(A,B)$.

قيم البحث

اقرأ أيضاً

110 - Karel Casteels 2021
Given a totally positive matrix, can one insert a line (row or column) between two given lines while maintaining total positivity? This question was first posed and solved by Johnson and Smith who gave an algorithm that results in one possible line i nsertion. In this work we revisit this problem. First we show that every totally positive matrix can be associated to a certain vertex-weighted graph in such a way that the entries of the matrix are equal to sums over certain paths in this graph. We call this graph a scaffolding of the matrix. We then use this to give a complete characterization of all possible line insertions as the strongly positive solutions to a given homogeneous system of linear equations.
The composition operators preserving total non-negativity and total positivity for various classes of kernels are classified, following three themes. Letting a function act by post composition on kernels with arbitrary domains, it is shown that such a composition operator maps the set of totally non-negative kernels to itself if and only if the function is constant or linear, or just linear if it preserves total positivity. Symmetric kernels are also discussed, with a similar outcome. These classification results are a byproduct of two matrix-completion results and the second theme: an extension of A.M. Whitneys density theorem from finite domains to subsets of the real line. This extension is derived via a discrete convolution with modulated Gaussian kernels. The third theme consists of analyzing, with tools from harmonic analysis, the preservers of several families of totally non-negative and totally positive kernels with additional structure: continuous Hankel kernels on an interval, Polya frequency functions, and Polya frequency sequences. The rigid structure of post-composition transforms of totally positive kernels acting on infinite sets is obtained by combining several specialized situations settled in our present and earlier works.
75 - Boris Landa 2020
It is well known that any positive matrix can be scaled to have prescribed row and column sums by multiplying its rows and columns by certain positive scaling factors (which are unique up to a positive scalar). This procedure is known as matrix scali ng, and has found numerous applications in operations research, economics, image processing, and machine learning. In this work, we investigate the behavior of the scaling factors and the resulting scaled matrix when the matrix to be scaled is random. Specifically, letting $widetilde{A}inmathbb{R}^{Mtimes N}$ be a positive and bounded random matrix whose entries assume a certain type of independence, we provide a concentration inequality for the scaling factors of $widetilde{A}$ around those of $A = mathbb{E}[widetilde{A}]$. This result is employed to bound the convergence rate of the scaling factors of $widetilde{A}$ to those of $A$, as well as the concentration of the scaled version of $widetilde{A}$ around the scaled version of $A$ in operator norm, as $M,Nrightarrowinfty$. When the entries of $widetilde{A}$ are independent, $M=N$, and all prescribed row and column sums are $1$ (i.e., doubly-stochastic matrix scaling), both of the previously-mentioned bounds are $mathcal{O}(sqrt{log N / N})$ with high probability. We demonstrate our results in several simulations.
We study minimax estimation of two-dimensional totally positive distributions. Such distributions pertain to pairs of strongly positively dependent random variables and appear frequently in statistics and probability. In particular, for distributions with $beta$-Holder smooth densities where $beta in (0, 2)$, we observe polynomially faster minimax rates of estimation when, additionally, the total positivity condition is imposed. Moreover, we demonstrate fast algorithms to compute the proposed estimators and corroborate the theoretical rates of estimation by simulation studies.
Let $K$ be a totally real number field of degree $n geq 2$. The inverse different of $K$ gives rise to a lattice in $mathbb{R}^n$. We prove that the space of Schwartz Fourier eigenfunctions on $mathbb{R}^n$ which vanish on the component-wise square r oot of this lattice, is infinite dimensional. The Fourier non-uniqueness set thus obtained is a discrete subset of the union of all spheres $sqrt{m}S^{n-1}$ for integers $m geq 0$ and, as $m rightarrow infty$, there are $sim c_{K} m^{n-1}$ many points on the $m$-th sphere for some explicit constant $c_{K}$, proportional to the square root of the discriminant of $K$. This contrasts a recent Fourier uniqueness result by Stoller. Using a different construction involving the codifferent of $K$, we prove an analogue of our results for discrete subsets of ellipsoids. In special cases, these sets also lie on spheres with more densely spaced radii, but with fewer points on each. We also study a related question about existence of Fourier interpolation formulas with nodes $sqrt{Lambda}$ for general lattices $Lambda subset mathbb{R}^n$. Using results about lattices in Lie groups of higher rank, we prove that, if $n geq 2$ and if a certain group $Gamma_{Lambda} leq operatorname{PSL}_2(mathbb{R})^n$ is discrete, then such interpolation formulas cannot exist. Motivated by these more general considerations, we revisit the case of one radial variable and prove, for all $n geq 5$ and all real $lambda > 2$, Fourier interpolation results for sequences of spheres $sqrt{2 m/ lambda}S^{n-1}$, where $m$ ranges over any fixed cofinite set of non-negative integers. The proof relies on a series of Poincare type for Hecke groups of infinite covolume, similarly to the construction previously used by Stoller.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا