ترغب بنشر مسار تعليمي؟ اضغط هنا

The theory to reconstruct the atomistic-level chain diffusion from the accelerated dynamics that is measured in mesoscale simulations of the coarse-grained system, is applied here to the dynamics of cis-1,4-Polybutadiene melts where each chain is des cribed as a soft interacting colloidal particle. The rescaling formalism accounts for the corrections in the dynamics due to the change in entropy and the change in friction that are a consequence of the coarse-graining procedure. By including these two corrections the dynamics is rescaled to reproduce the realistic dynamics of the system described at the atomistic level. The rescaled diffusion coefficient obtained from mesoscale simulations of coarse-grained cis-1,4-Polybutadiene melts shows good agreement with data from united atom simulations performed by Tsolou et al. The derived monomer friction coefficient is used as an input to the theory for cooperative dynamics that describes the internal dynamics of a polymer moving in a transient regions of slow cooperative motion in a liquid of macromolecules. Theoretically predicted time correlation functions show good agreement with simulations in the whole range of length and time scales in which data are available. The theory provides, from data of mesoscale simulations of soft spheres, the correct atomistic-level dynamics, having as solo input static quantities.
We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. textbf{132}, 11876, 2010). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection operator technique, we derive the Generalized Langevin Equations (GLE) for the coarse-grained representations of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each polymer is represented at two levels of coarse-graining: monomeric as a bead-and-spring model and molecular as a soft-colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation to recover the monomeric description. Change in entropy and change in friction are the two corrections to be accounted for to compensate the effects of coarse-graining on the polymer dynamics. The solution of the memory functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees of freedom provides the correction of the change in entropy due to coarse-graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene, represented as soft colloidal particles, by applying our rescaling approach shows a good agreement with data of translational diffusion measured experimentally and from simulations. The proposed method is used to predict self-diffusion coefficients of new polyethylene samples.
171 - J. McCarty , M. G. Guenza 2010
Obtaining a rigorous and reliable method for linking computer simulations of polymer blends and composites at different length scales of interest is a highly desirable goal in soft matter physics. In this paper a multiscale modeling procedure is pres ented for the efficient calculation of the static structural properties of binary homopolymer blends. The procedure combines computer simulations of polymer chains on two different length scales, using a united atom representation for the finer structure and a highly coarse-grained approach on the meso-scale, where chains are represented as soft colloidal particles interacting through an effective potential. A method for combining the structural information by inverse mapping is discussed, allowing for the efficient calculation of partial correlation functions, which are compared with results from full united atom simulations. The structure of several polymer mixtures is obtained in an efficient manner for several mixtures in the homogeneous region of the phase diagram. The method is then extended to incorporate thermal fluctuations through an effective chi parameter. Since the approach is analytical, it is fully transferable to numerous systems.
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable . It is here applied to determine the structure of several polymeric systems, which have different parameter values, such as molecular length, monomeric structure, local flexibility, and thermodynamic conditions. When the pair distribution function obtained from this procedure is compared with the results from a full atomistic simulation, it shows quantitative agreement. Moreover, the multiscale procedure accurately captures both large and local scale properties while remaining computationally advantageous.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا