ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the nature of spontaneous symmetry breaking in complex quantum systems by investigating the long-standing conjecture that the maximally symmetry-breaking quantum ground states are the most classical ones corresponding to a globally ordered phase. We make this argument quantitatively precise by comparing different local and global indicators of classicality and quantumness, respectively in symmetry-breaking and symmetry-preserving quantum ground states. We first discuss how naively comparing local, pairwise entanglement and discord apparently leads to the opposite conclusion. Indeed, we show that in symmetry-preserving ground states the two-body entanglement captures only a modest portion of the total two-body quantum correlations, while, on the contrary, in maximally symmetry-breaking ground states it contributes the largest amount to the total two-body quantum correlations. We then put to test the conjecture by looking at the global, macroscopic correlation properties of quantum ground states. We prove that the ground states which realize the maximum breaking of the Hamiltonian symmetries, associated to a globally ordered phase, are the only ones that: I) are always locally convertible, i.e. can be obtained from all other ground states by only applying LOCC transformations (local operations and classical communication), while the reverse is never possible; II) minimize the monogamy inequality on the globally shared, macroscopic bipartite entanglement.
Local unitary operations allow for a unifying approach to the quantification of quantum correlations among the constituents of a bipartite quantum system. For pure states, the distance between a given state and its image under least-perturbing local unitary operations is a bona fide measure of quantum entanglement, the so-called entanglement of response, which can be extended to mixed states via the convex roof construction. On the other hand, when defined directly on mixed states perturbed by local unitary operations, such a distance turns out to be a bona fide measure of quantum correlations, the so-called discord of response. Exploiting this unified framework, we perform a detailed comparison between two-body entanglement and two-body quantum discord in infinite XY quantum spin chains both in symmetry-preserving and symmetry-breaking ground states as well as in thermal states at finite temperature. The results of the investigation show that in symmetry-preserving ground states the two-point quantum discord dominates over the two-point entanglement, while in symmetrybreaking ground states the two-point quantum discord is strongly suppressed and the two-point entanglement is essentially unchanged. In thermal states, for certain regimes of Hamiltonian parameters, we show that the pairwise quantum discord and the pairwise entanglement can increase with increasing thermal fluctuations.
We investigate the nature of spontaneous symmetry breaking in complex quantum systems by conjecturing that the maximally symmetry breaking quantum ground states are the most classical ones corresponding to an ordered phase. We make this argument quan titatively precise by showing that the ground states which realize the maximum breaking of the Hamiltonian symmetries are the only ones that: I) are always locally convertible, i.e. can be obtained from all other ground states by local operations and classical communication, while the reverse is never possible; II) minimize the monogamy inequality for bipartite entanglement; III) minimize quantum correlations, as measured by the quantum discord, for all pairs of dynamical variables and are the only ground states for which the pairwise quantum correlations vanish asymptotically with the intra-pair distance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا