ﻻ يوجد ملخص باللغة العربية
We analyse the nature of spontaneous symmetry breaking in complex quantum systems by investigating the long-standing conjecture that the maximally symmetry-breaking quantum ground states are the most classical ones corresponding to a globally ordered phase. We make this argument quantitatively precise by comparing different local and global indicators of classicality and quantumness, respectively in symmetry-breaking and symmetry-preserving quantum ground states. We first discuss how naively comparing local, pairwise entanglement and discord apparently leads to the opposite conclusion. Indeed, we show that in symmetry-preserving ground states the two-body entanglement captures only a modest portion of the total two-body quantum correlations, while, on the contrary, in maximally symmetry-breaking ground states it contributes the largest amount to the total two-body quantum correlations. We then put to test the conjecture by looking at the global, macroscopic correlation properties of quantum ground states. We prove that the ground states which realize the maximum breaking of the Hamiltonian symmetries, associated to a globally ordered phase, are the only ones that: I) are always locally convertible, i.e. can be obtained from all other ground states by only applying LOCC transformations (local operations and classical communication), while the reverse is never possible; II) minimize the monogamy inequality on the globally shared, macroscopic bipartite entanglement.
We investigate the nature of spontaneous symmetry breaking in complex quantum systems by conjecturing that the maximally symmetry breaking quantum ground states are the most classical ones corresponding to an ordered phase. We make this argument quan
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica part
Parisis formal replica-symmetry--breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwa
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of
This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincare reduction theory is applied to the Schrodinger, Heisenberg and Wig