ترغب بنشر مسار تعليمي؟ اضغط هنا

An enigmatic and rare type of young stellar object is the FU Orionis class. The members are interpreted as outbursting, that is, currently in a state of enhanced accretion by several orders of magnitude relative to the more modest disk-to-star accret ion rates measured in typical T Tauri stars. They are key to our understanding of the history of stellar mass assembly and pre-main sequence evolution, as well as critical to consider in the chemical and physical evolution of the circumstellar environment -- where planets form. A common supposition is that *all* T Tauri stars undergo repeated such outbursts, more frequently in their earlier evolutionary stages when the disks are more massive, so as to build up the requisite amount of stellar mass on the required time scale. However, the actual data supporting this traditional picture of episodically enhanced disk accretion are limited, and the observational properties of the known sample of FU Ori objects quite diverse. To improve our understanding of these rare objects, we outline the logic for meaningfully constraining the rate of FU Ori outbursts and present numbers to guide parameter choices in the analysis of time domain surveys.
We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution R~ 1500-2000 red optical spectra acquired using the Palomar 200 and Kitt Peak 3.5m telescopes. Spectra l types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry from Da Rio et al. (2012, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.
We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg including optical and near-infrared time series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise, d uring 2011 and 2012 the source underwent additional episodes of brightening and dimming events including prolonged faint states. The observed high-amplitude variations are largely consistent with extinction changes having a 220 day quasi-periodic signal. Spectral evolution includes not only changes in the spectral slope but correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anticorrelated variation in forbidden line emission which, along with H_2, dominates optical and infrared spectra at faint epochs. Neutral and singly-ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic LiI 6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. CARMA maps resolve on larger scales a spatially extended outflow in mm-wavelength CO. We attribute the observed photometric and spectroscopic behavior in terms of occultation of the central star as well as the bright inner disk and the accretion/outflow zones that renders shocked gas in the inner part of the jet amenable to observation at the faint epochs. We discuss PTF 10nvg as a source exhibiting both accretion-driven (perhaps analogous to V1647 Ori) and extinction-driven (perhaps analogous to UX Ori or GM Cep) high-amplitude variability phenomena.
76 - Nicola Da Rio 2011
We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30x30), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a tech nique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.
During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebulas rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeils Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly rich near--infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.
163 - Adam A. Miller 2010
We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722). Prior to this outburst, LkHa 188-G4 was classified as a classical T Tauri star on the basis of its optic al emission-line spectrum superposed on a K8-type photosphere, and its photometric variability. The mid-infrared spectral index of LkHa 188-G4 indicates a Class II-type object. LkHa 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of > 3 mag on a time scale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (i) an increase in brightness by > 4 mag, (ii) a bright optical/near-infrared reflection nebula appeared, (iii) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra resemble those of late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHa 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified classical T Tauri star LkHa 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.
Multiple star systems are commonly assumed to form coevally; they thus provide the anchor for most calibrations of stellar evolutionary models. In this paper we study the binary population of the Taurus-Auriga association, using the component positio ns in an HR diagram in order to quantify the frequency and degree of coevality in young binary systems. After identifying and rejecting the systems that are known to be affected by systematic errors (due to further multiplicity or obscuration by circumstellar material), we find that the relative binary ages, |Delta log(tau)|, have an overall dispersion of sigma~0.40 dex. Random pairs of Taurus members are coeval only to within sigma~0.58 dex, indicating that Taurus binaries are indeed more coeval than the association as a whole. However, the distribution of |Delta log(tau)| suggests two populations, with ~2/3 of the sample appearing coeval to within the errors (sigma~0.16 dex) and the other ~1/3 distributed in an extended tail reaching |Delta log(tau)|~0.4-0.9 dex. To explain the finding of a multi-peaked distribution, we suggest that the tail of the differential age distribution includes unrecognized hierarchical multiples, stars seen in scattered light, or stars with disk contamination; additional followup is required to rule out or correct for these explanations. The relative coevality of binary systems does not depend significantly on the system mass, mass ratio, or separation. Indeed, any pair of Taurus members wider than ~10 (~0.7 pc) shows the full age spread of the association.
We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found fifteen new binary systems (3 in Taurus and 12 in Upper Sco) with s eparations of 3-30 (500-5000 AU) among all of the known members with masses of 2.5-0.012 Msun. The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher-mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the IMF or the field G dwarf distribution. The maximum separation also shows no evidence of a limit at <5000 AU until the abrupt cessation of any wide binary formation at system masses of ~0.3 Msun. We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and do not. In summary, only wide binary systems with total masses <0.3 Msun appear to be unusually wide.
We present continued results from a wide-field, ~150 deg^2, optical photometric and spectroscopic survey of the northern part of the ~5 Myr-old Upper Scorpius OB Association. Photometry and spectral types were used to derive effective temperatures an d luminosities and place newly identified association members onto a theoretical Hertzsprung-Russell diagram. From our survey, we have discovered 145 new low mass members of the association, and determined ~10% of these objects to be actively accreting material from a surrounding circumstellar disk. Based on comparison of the spatial distributions of low and high mass association members, we find no evidence for spatial segregation by mass within the northern portion of the association. Measured data are combined with pre-main sequence evolutionary models to derive a mass and age for each star. Using Monte Carlo simulations we show that, taking into account known observational uncertainties, the observed age dispersion for the low mass population in USco is consistent with all stars forming in a single burst ~5 Myr ago, and place an upper limit of +/-3 Myr on the age spread if the star formation rate has been constant in time. We derive the first spectroscopic mass function for USco that extends into the substellar regime, and compare these results to those for three other young clusters and associations.
We analyze the spatial distributions of young stars in Taurus-Auriga and Upper Sco as determined from the two-point correlation function (i.e. the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each associations spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D~1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D~0.7), but this fit is uncertain due to the limited area and possible spatially-variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of <0.07 degrees in Taurus and <1.7 degrees in Upper Sco; given ages of ~1 Myr and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 km/s and ~1.0 km/s, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of <120 (17000 AU) in Taurus and 75 (11000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3-30, are dominated by binary systems. However, the few lowest-mass pairs (M_prim < 0.3 M_sun) might be chance alignments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا