ترغب بنشر مسار تعليمي؟ اضغط هنا

In course of the organization of Workshop III entitled Cited References Analysis Using CRExplorer at the International Conference of the International Society for Scientometrics and Informetrics (ISSI2021), we have prepared three reference publicatio n year spectroscopy (RPYS) analyzes: (i) papers published in Journal of Informetrics, (ii) papers regarding the topic altmetrics, and (iii) papers published by Ludo Waltman (we selected this researcher since he received the Derek de Solla Price Memorial Medal during the ISSI2021 conference). The first RPYS analysis has been presented live at the workshop and the second and third RPYS analyzes have been left to the participants for undertaking after the workshop. Here, we present our own results for all three RPYS analyzes so that the participants can compare their results with ours or can additional help from this paper for performing these and other RPYS analyzes on their own. The three RPYS analyzes have shown quite different seminal papers with a few overlaps. Many of the foundational papers in the field of scientometrics (e.g., distributions of publications and citations), citation network and co-citation analyzes, and citation analysis with the aim of impact measurement and research evaluation were retrieved as seminal papers of the papers published in Journal of Informetrics. Mainly papers with discussions of the deficiencies of citation-based impact measurements and comparisons between altmetrics and citations were retrieved as seminal papers of the topic altmetrics. The RPYS analysis of the paper set published by Ludo Waltman mainly retrieved papers about network analyzes, citation relations, and citation impact measurement.
We have organized Workshop III entitled Cited References Analysis Using CRExplorer at ISSI2021. Here, we report and reflect on this workshop. The aim of this workshop was to bring beginners, practitioners, and experts in cited references analyses tog ether. A mixture of presentations and an interactive part was intended to provide benefits for all kinds of scientometricians with an interest in cited references analyses.
Research on heat waves (periods of excessively hot weather, which may be accompanied by high humidity) is a newly emerging research topic within the field of climate change research with high relevance for the whole of society. In this study, we anal yzed the rapidly growing scientific literature dealing with heat waves. No summarizing overview has been published on this literature hitherto. We developed a suitable search query to retrieve the relevant literature covered by the Web of Science (WoS) as complete as possible and to exclude irrelevant literature (n = 8,011 papers). The time-evolution of the publications shows that research dealing with heat waves is a highly dynamic research topic, doubling within about 5 years. An analysis of the thematic content reveals the most severe heat wave events within the recent decades (1995 and 2003), the cities and countries/regions affected (United States, Europe, and Australia), and the ecological and medical impacts (drought, urban heat islands, excess hospital admissions, and mortality). Risk estimation and future strategies for adaptation to hot weather are major political issues. We identified 104 citation classics which include fundamental early works of research on heat waves and more recent works (which are characterized by a relatively strong connection to climate change).
The second quantum technological revolution started around 1980 with the control of single quantum particles and their interaction on an individual basis. These experimental achievements enabled physicists and engineers to utilize long-known quantum features - especially superposition and entanglement of single quantum states - for a whole range of practical applications. We use a publication set of 54,598 papers from the Web of Science published between 1980 and 2018 to investigate the time development of four main subfields of quantum technology in terms of numbers and shares of publication as well as the occurrence of topics and their relation to the 25 top contributing countries. Three successive time periods are distinguished in the analyses by their short doubling times in relation to the whole Web of Science. The periods can be characterized by the publication of pioneering works, the exploration of research topics, and the maturing of quantum technology, respectively. Compared to the US, China has a far over proportional contribution to the worldwide publication output, but not in the segment of highly-cited papers.
In over five years, Bornmann, Stefaner, de Moya Anegon, and Mutz (2014) and Bornmann, Stefaner, de Moya Anegon, and Mutz (2014, 2015) have published several releases of the www.excellencemapping.net tool revealing (clusters of) excellent institutions worldwide based on citation data. With the new release, a completely revised tool has been published. It is not only based on citation data (bibliometrics), but also Mendeley data (altmetrics). Thus, the institutional impact measurement of the tool has been expanded by focusing on additional status groups besides researchers such as students and librarians. Furthermore, the visualization of the data has been completely updated by improving the operability for the user and including new features such as institutional profile pages. In this paper, we describe the datasets for the current excellencemapping.net tool and the indicators applied. Furthermore, the underlying statistics for the tool and the use of the web application are explained.
One way to assess a certain aspect of the value of scientific research is to measure the attention it receives on social media. While previous research has mostly focused on the number of mentions of scientific research on social media, the current s tudy applies topic networks to measure public attention to scientific research on Twitter. Topic networks are the networks of co-occurring author keywords in scholarly publications and networks of co-occurring hashtags in the tweets mentioning those scholarly publications. This study investigates which topics in opioid scholarly publications have received public attention on Twitter. Additionally, it investigates whether the topic networks generated from the publications tweeted by all accounts (bot and non-bot accounts) differ from those generated by non-bot accounts. Our analysis is based on a set of opioid scholarly publications from 2011 to 2019 and the tweets associated with them. We use co-occurrence network analysis to generate topic networks. Results indicated that Twitter users have mostly used generic terms to discuss opioid publications, such as Opioid, Pain, Addiction, Treatment, Analgesics, Abuse, Overdose, and Disorders. Results confirm that topic networks provide a legitimate method to visualize public discussions of health-related scholarly publications and how Twitter users discuss health-related scientific research differently from the scientific community. There was a substantial overlap between the topic networks based on the tweets by all accounts and non-bot accounts. This result indicates that it might not be necessary to exclude bot accounts for generating topic networks as they have a negligible impact on the results.
Growth of science is a prevalent issue in science of science studies. In recent years, two new bibliographic databases have been introduced which can be used to study growth processes in science from centuries back: Dimensions from Digital Science an d Microsoft Academic. In this study, we used publication data from these new databases and added publication data from two established databases (Web of Science from Clarivate Analytics and Scopus from Elsevier) to investigate scientific growth processes from the beginning of the modern science system until today. We estimated regression models that included simultaneously the publication counts from the four databases. The results of the unrestricted growth of science calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3 years. As the comparison of various segmented regression models in the current study revealed, the model with five segments fits the publication data best. We demonstrated that these segments with different growth rates can be interpreted very well, since they are related to either phases of economic (e.g., industrialization) and / or political developments (e.g., Second World War). In this study, we additionally analyzed scientific growth in two broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of scientific and economic growth in UK. The comparison between the two fields revealed only slight differences. The comparison of the British economic and scientific growth rates showed that the economic growth rate is slightly lower than the scientific growth rate.
We propose to use Twitter data as social-spatial sensors. This study deals with the question whether research papers on certain diseases are perceived by people in regions (worldwide) that are especially concerned by the diseases. Since (some) Twitte r data contain location information, it is possible to spatially map the activity of Twitter users referring to certain papers (e.g., dealing with tuberculosis). The resulting maps reveal whether heavy activity on Twitter is correlated with large numbers of people having certain diseases. In this study, we focus on tuberculosis, human immunodeficiency virus (HIV), and malaria, since the World Health Organization ranks these diseases as the top three causes of death worldwide by a single infectious agent. The results of the social-spatial Twitter maps (and additionally performed regression models) reveal the usefulness of the proposed sensor approach. One receives an impression of how research papers on the diseases have been perceived by people in regions that are especially concerned by the diseases. Our study demonstrates a promising approach for using Twitter data for research evaluation purposes beyond simple counting of tweets.
Many altmetric studies analyze which papers were mentioned how often in specific altmetrics sources. In order to study the potential policy relevance of tweets from another perspective, we investigate which tweets were cited in papers. If many tweets were cited in publications, this might demonstrate that tweets have substantial and useful content. Overall, a rather low number of tweets (n=5506) were cited by less than 3000 papers. Most tweets do not seem to be cited because of any cognitive influence they might have had on studies; they rather were study objects. Most of the papers citing tweets are from the subject areas Social Sciences, Arts and Humanities, and Computer Sciences. Most of the papers cited only one tweet. Up to 55 tweets cited in a single paper were found. This research-in-progress does not support a high policy-relevance of tweets. However, a content analysis of the tweets and/or papers might lead to a more detailed conclusion.
Field-normalization of citations is bibliometric standard. Despite the observed differences in citation counts between fields, the question remains how strong fields influence citation rates beyond the effect of attributes or factors possibly influen cing citations (FICs). We considered several FICs such as number of pages and number of co-authors in this study. We wondered whether there is a separate field-effect besides other effects (e.g., from numbers of pages and co-authors). To find an answer on the question in this study, we applied inverse-probability of treatment weighting (IPW). Using Web of Science data (a sample of 308,231 articles), we investigated whether mean differences among subject categories in citation rates still remain, even if the subject categories are made comparable in the field-related attributes (e.g., comparable of co-authors, comparable number of pages) by IPW. In a diagnostic step of our statistical analyses, we considered propensity scores as covariates in regression analyses to examine whether the differences between the fields in FICs vanish. The results revealed that the differences did not completely vanish but were strongly reduced. We received similar results when we calculated mean value differences of the fields after IPW representing the causal or unconfounded field effects on citations. However, field differences in citation rates remain. The results point out that field-normalization seems to be a prerequisite for citation analysis and cannot be replaced by the consideration of any set of FICs in citation analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا