ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases

118   0   0.0 ( 0 )
 نشر من قبل Lutz Bornmann Dr.
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Growth of science is a prevalent issue in science of science studies. In recent years, two new bibliographic databases have been introduced which can be used to study growth processes in science from centuries back: Dimensions from Digital Science and Microsoft Academic. In this study, we used publication data from these new databases and added publication data from two established databases (Web of Science from Clarivate Analytics and Scopus from Elsevier) to investigate scientific growth processes from the beginning of the modern science system until today. We estimated regression models that included simultaneously the publication counts from the four databases. The results of the unrestricted growth of science calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3 years. As the comparison of various segmented regression models in the current study revealed, the model with five segments fits the publication data best. We demonstrated that these segments with different growth rates can be interpreted very well, since they are related to either phases of economic (e.g., industrialization) and / or political developments (e.g., Second World War). In this study, we additionally analyzed scientific growth in two broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of scientific and economic growth in UK. The comparison between the two fields revealed only slight differences. The comparison of the British economic and scientific growth rates showed that the economic growth rate is slightly lower than the scientific growth rate.



قيم البحث

اقرأ أيضاً

Many studies in information science have looked at the growth of science. In this study, we re-examine the question of the growth of science. To do this we (i) use current data up to publication year 2012 and (ii) analyse it across all disciplines an d also separately for the natural sciences and for the medical and health sciences. Furthermore, the data are analysed with an advanced statistical technique - segmented regression analysis - which can identify specific segments with similar growth rates in the history of science. The study is based on two different sets of bibliometric data: (1) The number of publications held as source items in the Web of Science (WoS, Thomson Reuters) per publication year and (2) the number of cited references in the publications of the source items per cited reference year. We have looked at the rate at which science has grown since the mid-1600s. In our analysis of cited references we identified three growth phases in the development of science, which each led to growth rates tripling in comparison with the previous phase: from less than 1% up to the middle of the 18th century, to 2 to 3% up to the period between the two world wars and 8 to 9% to 2012.
We define a large class of abstract Coxeter groups, that we call $infty$--spanned, and for which the word growth rate and the geodesic growth rate appear to be Perron numbers. This class contains a fair amount of Coxeter groups acting on hyperbolic s paces, thus corroborating a conjecture by Kellerhals and Perren. We also show that for this class the geodesic growth rate strictly dominates the word growth rate.
One of the features of modern science is the formation of stable large collaborations of researchers working together within the projects that require the concentration of huge financial and human resources. Results of such common work are published in scientific papers by large co-authorship teams that include sometimes thousands of names. The goal of this work is to study the influence of such publications on the values of scientometric indicators calculated for individuals, research groups and science of Ukraine in general. Bibliometric data related to Ukraine, some academic institutions and selected individual researchers were collected from Scopus database and used for our study. It is demonstrated that while the relative share of publications by collective authors is comparatively small, their presence in a general pool can lead to statistically significant effects. The obtained results clearly show that traditional quantitative approaches for research assessment should be changed in order to take into account this phenomenon. Keywords: collective authorship, scientometrics, group science, Ukraine.
Todays scientific research is an expensive enterprise funded largely by taxpayers and corporate groups monies. It is a critical part in the competition between nations, and all nations want to discover fields of research that promise to create future industries, and dominate these by building up scientific and technological expertise early. However, our understanding of the value chain going from science to technology is still in a relatively infant stage, and the conversion of scientific leadership into market dominance remains very much an alchemy rather than a science. In this paper, we analyze bibliometric records of scientific journal publications and patents related to graphene, at the aggregate level as well as on the temporal and spatial dimensions. We find the present leaders of graphene science and technology emerged rather late in the race, after the initial scientific leaders lost their footings. More importantly, notwithstanding the amount of funding already committed, we find evidences that suggest the Golden Eras of graphene science and technology were in 2010 and 2012 respectively, in spite of the continued growth of journal and patent publications in this area.
Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, in press). In this paper, we conceptualize P 100 and propose an improvement which we call P100_. Advantages and disadvantages of citation-rank indicators are noted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا