ترغب بنشر مسار تعليمي؟ اضغط هنا

A major obstacle to achieving global convergence in distributed and federated learning is the misalignment of gradients across clients, or mini-batches due to heterogeneity and stochasticity of the distributed data. One way to alleviate this problem is to encourage the alignment of gradients across different clients throughout training. Our analysis reveals that this goal can be accomplished by utilizing the right optimization method that replicates the implicit regularization effect of SGD, leading to gradient alignment as well as improvements in test accuracies. Since the existence of this regularization in SGD completely relies on the sequential use of different mini-batches during training, it is inherently absent when training with large mini-batches. To obtain the generalization benefits of this regularization while increasing parallelism, we propose a novel GradAlign algorithm that induces the same implicit regularization while allowing the use of arbitrarily large batches in each update. We experimentally validate the benefit of our algorithm in different distributed and federated learning settings.
Deep neural networks often have millions of parameters. This can hinder their deployment to low-end devices, not only due to high memory requirements but also because of increased latency at inference. We propose a novel model compression method that generates a sparse trained model without additional overhead: by allowing (i) dynamic allocation of the sparsity pattern and (ii) incorporating feedback signal to reactivate prematurely pruned weights we obtain a performant sparse model in one single training pass (retraining is not needed, but can further improve the performance). We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models. Moreover, their performance surpasses that of models generated by all previously proposed pruning schemes.
Assume you have a pizza consisting of four ingredients (e.g., bread, tomatoes, cheese and olives) that you want to share with your friend. You want to do this fairly, meaning that you and your friend should get the same amount of each ingredient. How many times do you need to cut the pizza so that this is possible? We will show that two straight cuts always suffice. More formally, we will show the following extension of the well-known Ham-sandwich theorem: Given four mass distributions in the plane, they can be simultaneously bisected with two lines. That is, there exist two oriented lines with the following property: let $R^+_1$ be the region of the plane that lies to the positive side of both lines and let $R^+_2$ be the region of the plane that lies to the negative side of both lines. Then $R^+=R^+_1cup R^+_2$ contains exactly half of each mass distribution.
101 - Luis Barba 2018
Let $P$ be a simple polygon with $n$ vertices. For any two points in $P$, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in $P$. Given a set $S$ of $m$ sites being a subset of the ve rtices of $P$, we present a randomized algorithm to compute the geodesic farthest-point Voronoi diagram of $S$ in $P$ running in expected $O(n + m)$ time. That is, a partition of $P$ into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. In particular, this algorithm can be extended to run in expected $O(n + mlog m)$ time when $S$ is an arbitrary set of $m$ sites contained in $P$, thereby solving the open problem posed by Mitchell in Chapter 27 of the Handbook of Computational Geometry.
We consider asymmetric convex intersection testing (ACIT). Let $P subset mathbb{R}^d$ be a set of $n$ points and $mathcal{H}$ a set of $n$ halfspaces in $d$ dimensions. We denote by $text{ch}(P)$ the polytope obtained by taking the convex hull of $ P$, and by $text{fh}(mathcal{H})$ the polytope obtained by taking the intersection of the halfspaces in $mathcal{H}$. Our goal is to decide whether the intersection of $mathcal{H}$ and the convex hull of $P$ are disjoint. Even though ACIT is a natural variant of classic LP-type problems that have been studied at length in the literature, and despite its applications in the analysis of high-dimensional data sets, it appears that the problem has not been studied before. We discuss how known approaches can be used to attack the ACIT problem, and we provide a very simple strategy that leads to a deterministic algorithm, linear on $n$ and $m$, whose running time depends reasonably on the dimension $d$.
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an $O(nloglog n+mlog m)$- time algorithm to compute the geodesic farthest-point Voronoi diagram of $m$ point sites in a simple $n$-gon. This improves the previously best known algorithm by Aronov et al. [Discrete Comput. Geom. 9(3):217-255, 1993]. In the case that all point sites are on the boundary of the simple polygon, we can compute the geodesic farthest-point Voronoi diagram in $O((n + m) log log n)$ time.
We present time-space trade-offs for computing the Euclidean minimum spanning tree of a set $S$ of $n$ point-sites in the plane. More precisely, we assume that $S$ resides in a random-access memory that can only be read. The edges of the Euclidean mi nimum spanning tree $text{EMST}(S)$ have to be reported sequentially, and they cannot be accessed or modified afterwards. There is a parameter $s in {1, dots, n}$ so that the algorithm may use $O(s)$ cells of read-write memory (called the workspace) for its computations. Our goal is to find an algorithm that has the best possible running time for any given $s$ between $1$ and $n$. We show how to compute $text{EMST}(S)$ in $Obig((n^3/s^2)log s big)$ time with $O(s)$ cells of workspace, giving a smooth trade-off between the two best known bounds $O(n^3)$ for $s = 1$ and $O(n log n)$ for $s = n$. For this, we run Kruskals algorithm on the relative neighborhood graph (RNG) of $S$. It is a classic fact that the minimum spanning tree of $text{RNG}(S)$ is exactly $text{EMST}(S)$. To implement Kruskals algorithm with $O(s)$ cells of workspace, we define $s$-nets, a compact representation of planar graphs. This allows us to efficiently maintain and update the components of the current minimum spanning forest as the edges are being inserted.
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-of fs between the number of recolorings and the number of colors used. For any $d>0$, the first algorithm maintains a proper $O(mathcal{C} d N^{1/d})$-coloring while recoloring at most $O(d)$ vertices per update, where $mathcal{C}$ and $N$ are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an $O(mathcal{C} d)$-coloring with $O(d N^{1/d})$ recolorings per update. The two converge when $d = log N$, maintaining an $O(mathcal{C} log N)$-coloring with $O(log N)$ recolorings per update. We also present a lower bound, showing that any algorithm that maintains a $c$-coloring of a $2$-colorable graph on $N$ vertices must recolor at least $Omega(N^frac{2}{c(c-1)})$ vertices per update, for any constant $c geq 2$.
The 3SUM problem asks if an input $n$-set of real numbers contains a triple whose sum is zero. We consider the 3POL problem, a natural generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The mo tivations are threefold. Raz, Sharir, and de Zeeuw gave a $O(n^{11/6})$ upper bound on the number of solutions of trivariate polynomial equations when the solutions are taken from the cartesian product of three $n$-sets of real numbers. We give algorithms for the corresponding problem of counting such solutions. Gro nlund and Pettie recently designed subquadratic algorithms for 3SUM. We generalize their results to 3POL. Finally, we shed light on the General Position Testing (GPT) problem: Given $n$ points in the plane, do three of them lie on a line?, a key problem in computational geometry. We prove that there exist bounded-degree algebraic decision trees of depth $O(n^{frac{12}{7}+varepsilon})$ that solve 3POL, and that 3POL can be solved in $O(n^2 {(log log n)}^frac{3}{2} / {(log n)}^frac{1}{2})$ time in the real-RAM model. Among the possible applications of those results, we show how to solve GPT in subquadratic time when the input points lie on $o({(log n)}^frac{1}{6}/{(log log n)}^frac{1}{2})$ constant-degree polynomial curves. This constitutes a first step towards closing the major open question of whether GPT can be solved in subquadratic time. To obtain these results, we generalize important tools --- such as batch range searching and dominance reporting --- to a polynomial setting. We expect these new tools to be useful in other applications.
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added . We define a general update operation for planar graphs modeling the incremental construction of several variants of Voronoi diagrams as well as the incremental construction of an intersection of halfspaces in $mathbb{R}^3$. We show that the amortized number of edge insertions and removals needed to add a new site is $O(sqrt{n})$. A matching $Omega(sqrt{n})$ combinatorial lower bound is shown, even in the case where the graph of the diagram is a tree. This contrasts with the $O(log{n})$ upper bound of Aronov et al. (2006) for farthest-point Voronoi diagrams when the points are inserted in order along their convex hull. We present a semi-dynamic data structure that maintains the Voronoi diagram of a set $S$ of $n$ sites in convex position. This structure supports the insertion of a new site $p$ and finds the asymptotically minimal number $K$ of edge insertions and removals needed to obtain the diagram of $S cup {p}$ from the diagram of $S$, in time $O(K,mathrm{polylog} n)$ worst case, which is $O(sqrt{n};mathrm{polylog} n)$ amortized by the aforementioned result. The most distinctive feature of this data structure is that the graph of the Voronoi diagram is maintained at all times and can be traversed in the natural way; this contrasts with other known data structures supporting nearest neighbor queries. Our data structure supports general search operations on the current Voronoi diagram, which can, for example, be used to perform point location queries in the cells of the current Voronoi diagram in $O(log n)$ time, or to determine whether two given sites are neighbors in the Delaunay triangulation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا