ترغب بنشر مسار تعليمي؟ اضغط هنا

Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy . Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.
We examine the intrinsic energy dissipation steps in electrically biased graphene channels. By combining in-situ measurements of the spontaneous optical emission with a Raman spectroscopy study of the graphene sample under conditions of current flow, we obtain independent information on the energy distribution of the electrons and phonons. The electrons and holes contributing to light emission are found to obey a thermal distribution, with temperatures in excess of 1500 K in the regime of current saturation. The zone-center optical phonons are also highly excited and are found to be in equilibrium with the electrons. For a given optical phonon temperature, the anharmonic downshift of the Raman G-mode is smaller than expected under equilibrium conditions, suggesting that the electrons and high-energy optical phonons are not fully equilibrated with all of the phonon modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا