ترغب بنشر مسار تعليمي؟ اضغط هنا

Incorporating preclinical animal data, which can be regarded as a special kind of historical data, into phase I clinical trials can improve decision making when very little about human toxicity is known. In this paper, we develop a robust hierarchica l modelling approach to leverage animal data into new phase I clinical trials, where we bridge across non-overlapping, potentially heterogeneous patient subgroups. Translation parameters are used to bring both historical and contemporary data onto a common dosing scale. This leads to feasible exchangeability assumptions that the parameter vectors, which underpin the dose-toxicity relationship per study, are assumed to be drawn from a common distribution. Moreover, human dose-toxicity parameter vectors are assumed to be exchangeable either with the standardised, animal study-specific parameter vectors, or between themselves. Possibility of non-exchangeability for each parameter vector is considered to avoid inferences for extreme subgroups being overly influenced by the other. We illustrate the proposed approach with several trial data examples, and evaluate the operating characteristics of our model compared with several alternatives in a simulation study. Numerical results show that our approach yields robust inferences in circumstances, where data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.
Leveraging preclinical animal data for a phase I first-in-man trial is appealing yet challenging. A prior based on animal data may place large probability mass on values of the dose-toxicity model parameter(s), which appear infeasible in light of dat a accrued from the ongoing phase I clinical trial. In this paper, we seek to use animal data to improve decision making in a model-based dose-escalation procedure for phase I oncology trials. Specifically, animal data are incorporated via a robust mixture prior for the parameters of the dose-toxicity relationship. This prior changes dynamically as the trial progresses. After completion of treatment for each cohort, the weight allocated to the informative component, obtained based on animal data alone, is updated using a decision-theoretic approach to assess the commensurability of the animal data with the human toxicity data observed thus far. In particular, we measure commensurability as a function of the utility of optimal prior predictions for the human responses (toxicity or no toxicity) on each administered dose. The proposed methodology is illustrated through several examples and an extensive simulation study. Results show that our proposal can address difficulties in coping with prior-data conflict commencing in sequential trials with a small sample size.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا