ترغب بنشر مسار تعليمي؟ اضغط هنا

Revelations of large scale electronic surveillance and data mining by governments and corporations have fueled increased adoption of HTTPS. We present a traffic analysis attack against over 6000 webpages spanning the HTTPS deployments of 10 widely us ed, industry-leading websites in areas such as healthcare, finance, legal services and streaming video. Our attack identifies individual pages in the same website with 89% accuracy, exposing personal details including medical conditions, financial and legal affairs and sexual orientation. We examine evaluation methodology and reveal accuracy variations as large as 18% caused by assumptions affecting caching and cookies. We present a novel defense reducing attack accuracy to 27% with a 9% traffic increase, and demonstrate significantly increased effectiveness of prior defenses in our evaluation context, inclusive of enabled caching, user-specific cookies and pages within the same website.
Classifiers are often used to detect miscreant activities. We study how an adversary can systematically query a classifier to elicit information that allows the adversary to evade detection while incurring a near-minimal cost of modifying their inten ded malfeasance. We generalize the theory of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition input space into two sets one of which is convex. We present query algorithms for this family that construct undetected instances of approximately minimal cost using only polynomially-many queries in the dimension of the space and in the level of approximation. Our results demonstrate that near-optimal evasion can be accomplished without reverse-engineering the classifiers decision boundary. We also consider general lp costs and show that near-optimal evasion on the family of convex-inducing classifiers is generally efficient for both positive and negative convexity for all levels of approximation if p=1.
Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2 005) to convex-inducing classifiers. We present algorithms that construct undetected instances of near-minimal cost using only polynomially many queries in the dimension of the space and without reverse engineering the decision boundary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا