ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of inte rest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.
This letter reports experimental results on a new type of soliton: the random temporal dark soliton. One excites an incoherent large-amplitude propagating spin-wave packet in a ferromagnetic film strip with a repulsive, instantaneous nonlinearity. On e then observes the random formation of dark solitons from this wave packet. The solitons appear randomly in time and in position relative to the entire wave packet. They can be gray or black. For wide and/or very strong spin-wave packets, one also observes multiple dark solitons. In spite of the randomness of the initial wave packets and the random formation processes, the solitons show signatures that are found for conventional coherent dark solitons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا