ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent advances in communications, mobile computing, and artificial intelligence have greatly expanded the application space of intelligent distributed sensor networks. This in turn motivates the development of generalized Bayesian decentralized data fusion (DDF) algorithms for robust and efficient information sharing among autonomous agents using probabilistic belief models. However, DDF is significantly challenging to implement for general real-world applications requiring the use of dynamic/ad hoc network topologies and complex belief models, such as Gaussian mixtures or hybrid Bayesian networks. To tackle these issues, we first discuss some new key mathematical insights about exact DDF and conservative approximations to DDF. These insights are then used to develop novel generalized DDF algorithms for complex beliefs based on mixture pdfs and conditional factors. Numerical examples motivated by multi-robot target search demonstrate that our methods lead to significantly better fusion results, and thus have great potential to enhance distributed intelligent reasoning in sensor networks.
For a spin-1/2 particle moving in a background magnetic field in noncommutative phase space, Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the c harged particle along the magnetic field has the effect to increase the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture: Along an effective magnetic field the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators, the motion becomes complicated.
173 - Xiao Lin , Yang Xu , Shisheng Lin 2012
Optical and electronic properties of two dimensional few layers graphitic silicon carbide (GSiC), in particular monolayer and bilayer, are investigated by density functional theory and found different from that of graphene and silicene. Monolayer GSi C has direct bandgap while few layers exhibit indirect bandgap. The bandgap of monolayer GSiC can be tuned by an in-plane strain. Properties of bilayer GSiC are extremely sensitive to the interlayer distance. These predictions promise that monolayer GSiC could be a remarkable candidate for novel type of light-emitting diodes utilizing its unique optical properties distinct from graphene, silicene and few layers GSiC.
We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropr iate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا