ترغب بنشر مسار تعليمي؟ اضغط هنا

182 - Chang Liu , Lijing Shao 2021
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
Lorentz invariance plays a fundamental role in modern physics. However, tiny violations of the Lorentz invariance may arise in some candidate quantum gravity theories. Prominent signatures of the gravitational Lorentz invariance violation (gLIV) incl ude anisotropy, dispersion, and birefringence in the dispersion relation of gravitational waves (GWs). Using a total of 50 GW events in the GW transient catalogs GWTC-1 and GWTC-2, we perform an analysis on the anisotropic birefringence phenomenon. The use of multiple events allows us to completely break the degeneracy among gLIV coefficients and globally constrain the coefficient space. Compared to previous results at mass dimensions 5 and 6 for the Lorentz-violating operators, we tighten the global limits of 34 coefficients by factors ranging from $2$ to $7$.
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the pros pects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binary masses and mass ratios affect the abilities of LISA and Taiji to detect CBPs. Second, for certain known detached DWDs with high signal-to-noise ratios, we quantify the possibility of CBP detections around them. Third, based on the DWD population obtained from the Mock LISA Data Challenge, we present basic assessments of the CBP detections in our Galaxy during a 4-year mission time for LISA and Taiji. We discuss the constraints on the detectable zone of each system, as well as the distributions of the inner/outer edge of the detectable zone. Based on the DWD population, we further inject two different planet distributions with an occurrence rate of $50%$ and constrain the total detection rates. We finally briefly discuss the prospects for detecting habitable CBPs around DWDs with a simplified model. These results can provide helpful inputs for upcoming exoplanetary projects and help analyze planetary systems after the common envelope phase.
183 - Xueli Miao , Heng Xu , Lijing Shao 2021
At present, 19 double neutron star (DNS) systems are detected by radio timing and 2 merging DNS systems are detected by kilo-hertz gravitational waves. Because of selection effects, none of them has an orbital period $P_b$ in the range of a few tens of minutes. In this paper we consider a multimessenger strategy proposed by Kyutoku et al. (2019), jointly using the Laser Interferometer Space Antenna (LISA) and the Square Kilometre Array (SKA) to detect and study Galactic pulsar-neutron star (PSR-NS) systems with $P_b sim$ 10-100 min. We assume that we will detect PSR-NS systems by this strategy. We use standard pulsar timing software to simulate times of arrival of pulse signals from these binary pulsars. We obtain the precision of timing parameters of short-orbital-period PSR-NS systems whose orbital period $P_b in (8,120),$min. We use the simulated uncertainty of the orbital decay, $dot{P}_{b}$, to predict future tests for a variety of alternative theories of gravity. We show quantitatively that highly relativistic PSR-NS systems will significantly improve the constraint on parameters of specific gravity theories in the strong field regime. We also investigate the orbital periastron advance caused by the Lense-Thirring effect in a PSR-NS system with $P_b = 8,$min, and show that the Lense-Thirring effect will be detectable to a good precision.
Atom-interferometer gravitational-wave (GW) observatory, as a new design of ground-based GW detector for the near future, is sensitive at a relatively low frequency for GW observations. Taking the proposed atom interferometer Zhaoshan Long-baseline A tom Interferometer Gravitation Antenna (ZAIGA), and its illustrative upgrade (Z+) as examples, we investigate how the atom interferometer will complement ground-based laser interferometers in testing the gravitational dipole radiation from binary neutron star (BNS) mergers. A test of such kind is important for a better understanding of the strong equivalence principle laying at the heart of Einsteins general relativity. To obtain a statistically sound result, we sample BNS systems according to their merger rate and population, from which we study the expected bounds on the parameterized dipole radiation parameter $B$. Extracting BNS parameters and the dipole radiation from the combination of ground-based laser interferometers and the atom-interferometer ZAIGA/Z+, we are entitled to obtain tighter bounds on $B$ by a few times to a few orders of magnitude, compared to ground-based laser interferometers alone, ultimately reaching the levels of $|B| lesssim 10^{-9}$ (with ZAIGA) and $|B| lesssim 10^{-10}$ (with Z+).
We investigate the scalar-tensor gravity of Damour and Esposito-Far`ese (DEF) with spontaneous scalarization phenomena developed for neutron stars (NSs). Instead of solving the modified Tolman-Oppenheimer-Volkoff equations for slowly rotating NSs via the shooting method, we construct a reduced-order surrogate model to predict the relations of mass, radius, moment of inertia, effective scalar coupling, and two extra coupling parameters of a NS to its central matter density. We code the model in the pySTGROMX package that speeds up the calculations at two and even three orders of magnitude and yet still keeps accuracy at $sim1%$ level. Using the package, we can predict all the post-Keplerian parameters in the timing of binary pulsars conveniently, which allows us to place comprehensive constraints on the DEF theory in a quick and sound way. As an application, we perform Markov-chain Monte Carlo simulations to constrain the parameters of the DEF theory with well-timed binary pulsars. Utilizing five NS-white dwarf and three NS-NS binaries, we obtain the most stringent constraints on the DEF theory up to now. Our work provides a public tool for quick evaluation of NSs derived parameters to test gravity in the strong-field regime.
Photon is the fundamental quantum of electromagnetic fields, whose mass, $m_{gamma}$, should be strictly zero in Maxwells theory. But not all theories adopt this hypothesis. If the rest mass of the photon is not zero, there will be an additional time delay between photons of different frequencies after they travel through a fixed distance. By analyzing the time delay, we can measure or constrain the photon mass. Fast radio bursts (FRBs) -- transient radio bursts characterized by millisecond duration and cosmological propagation -- are excellent astrophysical laboratories to constrain $m_{gamma}$. In this work we use a catalog of 129 FRBs in a Bayesian framework to constrain $m_{gamma}$. As a result, we obtain a new bound on the photon mass, $m_{gamma} leq 3.1times 10^{-51}rm,kgsimeq 1.7 times 10^{-15},eV/c^2$ ($m_{gamma} leq 3.9times 10^{-51}rm,kg simeq 2.2 times 10^{-15},eV/c^2$) at the $68%$ $(95%$) confidence level. The result represents the best limit purely from kinematic analysis of light propagation. The bound on the photon mass will be tighter in the near future with increment in the number of FRBs, more accurate measurement of the redshift for FRBs, and refinement in the knowledge about the origin of dispersion measures (DMs).
99 - Rui Xu , Yong Gao , Lijing Shao 2021
We study effects of Lorentz-invariance violation on the rotation of neutron stars (NSs) in the minimal gravitational Standard-Model Extension framework, and calculate the quadrupole radiation generated by them. Aiming at testing Lorentz invariance wi th observations of continuous gravitational waves (GWs) from rotating NSs in the future, we compare the GW spectra of a rotating ellipsoidal NS under Lorentz-violating gravity with those of a Lorentz-invariant one. The former are found to possess frequency components higher than the second harmonic, which does not happen for the latter, indicating those higher frequency components to be potential signatures of Lorentz violation in continuous GW spectra of rotating NSs.
Recently, an indicative evidence of a stochastic process, reported by the NANOGrav Collaboration based on the analysis of 12.5-year pulsar timing array data which might be interpreted as a potential stochastic gravitational wave signal, has aroused k een interest of theorists. The first-order color charge confinement phase transition at the QCD scale could be one of the cosmological sources for the NANOGrav signal. If the phase transition is flavor dependent and happens sequentially, it is important to find that what kind of QCD matter in which the first-order confinement/deconfinement phase transition happens is more likely to be the potential source of the NANOGrav signal during the evolution of the universe. In this paper, we would like to illustrate that the NANOGrav signal could be generated from confinement/deconfinement transition in either heavy static quarks with a zero baryon chemical potential, or quarks with a finite baryon chemical potential. In contrast, the gluon confinement could not possibly be the source for the NANOGrav signal according to the current observation. Future observation will help to distinguish between different scenarios.
279 - Rui Xu , Yong Gao , Lijing Shao 2020
The Standard-Model Extension (SME) is an effective-field-theoretic framework that catalogs all Lorentz-violating field operators. The anisotropic correction from the minimal gravitational SME to Newtonian gravitational energy for spheroids is studied , and the rotation of rigid spheroids is solved with perturbation method and numerical approach. The well-known forced precession solution given by Nordtvedt in the parameterized post-Newtonian formalism is recovered and applied to two observed solitary millisecond pulsars to set bounds on the coefficients for Lorentz violation in the SME framework. A different solution, which describes the rotation of an otherwise free-precessing star in the presence of Lorentz violation, is found, and its consequences on pulsar signals and continuous gravitational waves (GWs) emitted by neutron stars (NSs) are investigated. The study provides new possible tests of Lorentz violation once free-precessing NSs are firmly identified in the future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا