ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically study the superconductivity in multiorbital superconductors based on a three-orbital tight-banding model. With appropriate values of the nearest-neighbour exchange $J_{1}^{alpha beta}$ and the next-nearest-neighbour exchange $J_{2}^{ alpha beta}$, we find a two-dome structure in the $T_{c}-n$ phase diagram: one dome in the doping range $n<3.9$ where the superconducting (SC) state is mainly $s_{x^{2} y^{2}}$ component contributed by inter-orbital pairing, the other dome in the doping range $3.9<n<4.46$ where the SC state is mainly $s_{x^{2} y^{2}}+s_{x^{2}+y^{2}}$ components contributed by intra-orbital pairing. We find that the competition between different orbital pairing leads to two-dome SC phase diagrams in multiorbital superconductors, and different matrix elements of $J_{1}$ and $J_{2}$ considerably affect the boundary of two SC domes.
Motivated by the recent upsurge in research of three-dimensional topological semimetals (SMs), we theoretically study the RKKY interaction between magnetic impurities in node-line SMs with and without the chirality and obtain the analytical expressio ns. We find that unique toroidal Fermi surface (FS) in nodal-line SMs, distinctly different from the spheroid FS in the SMs with the point nodes, has significant influences on the RKKY interaction, leading to strong anisotropic oscillation and unique decay features. In the direction perpendicular to node-line plane, as usual, there is only one oscillation period related to the Fermi energy. In contrast, in the node-line plane, the RKKY interaction form a beating pattern and oscillates more rapidly with two distinct periods: one is coming from the Fermi energy and the other is from the radius of node-line. More importantly, inside nodal-line SMs bulk, the decay rate of RKKY interaction manifests a typical two-dimensional feature for impurities aligned along the direction perpendicular to nodal-line plane. Furthermore, the magnetic interactions in nodal-line SMs with linear and quadratic dispersions in the nodal-line plane are compared. We also discuss the possible application of the present theory on realistic NLSM ZrSiSe. Our results shed the light for application of magnetically doped node-line SMs in spintronics.
103 - Yun Song , Liang-Jian Zou 2009
The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and reali stic compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$. A distinctive feature of the optical conductivity of the two nondegenerate bands is found in OSMT phase, where the metallic character of the wide band is indicated by a nonzero Drude peak, while the insulating narrow band has its Drude peak drop to zero in the mean time. We also find that the OSMT regime expands profoundly with the increase of interorbital hopping integrals. On the contrary, it is shown that large and negative level splitting of the two orbitals diminishes the OSMT regime completely. Applying the present findings to compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$, we demonstrate that in the doping region from $x=0.2$ to 2.0, the negative level splitting is unfavorable to the OSMT phase.
76 - Feng Lu , Liang-Jian Zou 2008
Motivated by the recent contradiction of the superconducting pairing symmetry in the angle-resolved photoemission spectra (ARPES) and the nuclear magnetic resonance (NMR) data in the FeAs superconductors, we present the theoretical results on the pha se diagram, the temperature dependent Fermi surfaces in normal state, the ARPES character of quasiparticles and the spin-lattice relaxation 1/T$_{1}$ of the two-orbital t-t$^{}$-J-J$^{}$ models. Our results show that most of the properties observed in iron-based superconductors could be comprehensively understood in the present scenario qualitatively, indicating that the pairing symmetry of the ironpnictides is anisotropic nodeless s-wave, mainly originating from the band structures and the Fermi surface topology.
We present the zero-temperature superconducting (SC) ground states of the two-orbital asymmetric $t-J$ model on a square lattice by means of the auxiliary-boson approach. Besides the two-gap SC phase, we find an orbital selective SC (OSSC) phase, whi ch is simultaneously SC in one orbit and normal in another orbit. The novel OSSC phase is stable only for sufficient asymmetric degree in orbital space and doping concentration. The pairing symmetry of the SC phase is s-wave-like in most doping regime, against the d-wave symmetry of the single-orbital $t-J$ model in a square lattice. The implication of the present scenario on multi-orbital heavy fermion and iron-based superconductors is also discussed.
We have investigated the half-filling two-orbital Hubbard model on a triangular lattice by means of the dynamical mean-field theory (DMFT). The densities of states and optical conductivity clearly show the occurence of metal-insulating transition (MI T) at U$_{c}$, U$_{c}$=18.2, 16.8, 6.12 and 5.85 for J=0, 0.01U, U/4 and U/3, respectively. The distinct continuities of double occupation of electrons, local square moments and local susceptibility of the charge, the spin and the orbital at J > 0 suggest that the MIT is the first-order; however at J=0, the MIT is the second-order in the half-filling two-orbital Hubbard model on triangular lattices. We attribute the first-order nature of the MIT to the low symmetry of the systems with finite Hunds coupling J.
We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs$_{2}$AgF$_{4}$. After self-consistently determining the harmonic and anharmonic Jahn-Teller d istortions, we show that the anharmonic distortion stabilizes the staggered x$^{2}$-z$^{2}$/y$^{2}$-z$^{2}$ orbital and ferromagnetic ground state, rather than the antiferromagnetic one. The amplitudes of lattice distortions, Q$_{2}$ and Q$_{3}$, the magnetic coupling strengthes, J$_{x,y}$, and the magnetic moment, are in good agreement with the experimental observation.
Temperature-dependence and magnetic field-dependence of the Hall effect and the magnetic property in manganese-oxide thin films are studied. The spontaneous magnetization and the Hall resistivity are obtained for a various of magnetic fields over all the temperature. It is shown that the Hall resistivity in small magnetic field is to exhibit maximum near the Curie point, and strong magnetic field moves the position of the Hall resistivity peak to much high temperature and suppresses the peak value. The change of the Hall resistance in strong magnetic field may be larger than that of the diagonal ones. The abnormal Hall resistivity in the ferromagnetic manganese-oxide thin-films is attributed to the spin-correlation fluctuation scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا