ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting Properties of Two-Orbital t-t-J-J Models

147   0   0.0 ( 0 )
 نشر من قبل Liang-Jian Zou
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the recent contradiction of the superconducting pairing symmetry in the angle-resolved photoemission spectra (ARPES) and the nuclear magnetic resonance (NMR) data in the FeAs superconductors, we present the theoretical results on the phase diagram, the temperature dependent Fermi surfaces in normal state, the ARPES character of quasiparticles and the spin-lattice relaxation 1/T$_{1}$ of the two-orbital t-t$^{}$-J-J$^{}$ models. Our results show that most of the properties observed in iron-based superconductors could be comprehensively understood in the present scenario qualitatively, indicating that the pairing symmetry of the ironpnictides is anisotropic nodeless s-wave, mainly originating from the band structures and the Fermi surface topology.



قيم البحث

اقرأ أيضاً

We present the zero-temperature superconducting (SC) ground states of the two-orbital asymmetric $t-J$ model on a square lattice by means of the auxiliary-boson approach. Besides the two-gap SC phase, we find an orbital selective SC (OSSC) phase, whi ch is simultaneously SC in one orbit and normal in another orbit. The novel OSSC phase is stable only for sufficient asymmetric degree in orbital space and doping concentration. The pairing symmetry of the SC phase is s-wave-like in most doping regime, against the d-wave symmetry of the single-orbital $t-J$ model in a square lattice. The implication of the present scenario on multi-orbital heavy fermion and iron-based superconductors is also discussed.
The question of whether one should speak of a pairing glue in the Hubbard and t-J models is basically a question about the dynamics of the pairing interaction. If the dynamics of the pairing interaction arises from virtual states, whose energies corr espond to the Mott gap, and give rise to the exchange coupling J, the interaction is instantaneous on the relative time scales of interest. In this case, while one might speak of an instantaneous glue, this interaction differs from the traditional picture of a retarded pairing interaction. However, if the energies correspond to the spectrum seen in the dynamic spin susceptibility, then the interaction is retarded and one speaks of a spin-fluctuation glue which mediates the d-wave pairing. Here we present results from numerical studies which provide insight into this question.
Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, $W$. For the ordinary t-J model with $W$=0, the scaling of the Drude weight $D propto delta^ 2$ for small doping concentration $delta$ is obtained, which indicates anomalous dynamic exponent $z$=4 of the Mott transition. When $W$ is switched on, the dynamic exponent recovers its conventional value $z$=2. This corresponds to an incoherent-to-coherent transition associated with the switching of the two-particle transfer.
232 - L. Vidmar , J. Bonca 2013
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization metho d defined over a limited functional space (EDLFS), we show that the average distance between two holes scales as $langle d rangle sim 2 (J/t)^{-1/4}$ for J/t < 0.15, therefore providing strong evidence that two holes in the t-J model form the bound state for any nonzero J/t. However, the symmetry of such bound pair in the ground state is p-wave. This state is consistent with phase separation at finite hole filling, as observed in a recent study [Maska et al, Phys. Rev. B 85, 245113 (2012)].
We compute the Hagedorn temperature of $mu T bar T + varepsilon_+ J bar T + varepsilon_-T bar J$ deformed CFT using the universal kernel formula for the thermal partition function. We find a closed analytic expression for the free energy and the Hage dorn temperature as a function of $mu$, $varepsilon_+$, and $varepsilon_-$ for the case of a compact scalar boson by taking the large volume limit. We also compute the Hagedorn temperature for the single trace deformed $AdS_3 times S^1 times T^3 times S^3$ using holographic methods. We identify black hole configurations whose thermodynamics matches the functional dependence on $(mu, varepsilon_+, varepsilon_-)$ of the double trace deformed compact scalars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا