ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - Liane Gabora , Mike Steel 2020
Autocatalytic networks have been used to model the emergence of self-organizing structure capable of sustaining life and undergoing biological evolution. Here, we model the emergence of cognitive structure capable of undergoing cultural evolution. Me ntal representations of knowledge and experiences play the role of catalytic molecules, and interactions amongst them (e.g., the forging of new associations) play the role of reactions, and result in representational redescription. The approach tags mental representations with their source, i.e., whether they were acquired through social learning, individual learning (of pre-existing information), or creative thought (resulting in the generation of new information). This makes it possible to model how cognitive structure emerges, and to trace lineages of cumulative culture step by step. We develop a formal representation of the cultural transition from Oldowan to Acheulean tool technology using Reflexively Autocatalytifc and Food set generated (RAF) networks. Unlike more primitive Oldowan stone tools, the Acheulean hand axe required not only the capacity to envision and bring into being something that did not yet exist, but hierarchically structured thought and action, and the generation of new mental representations: the concepts EDGING, THINNING, SHAPING, and a meta-concept, HAND AXE. We show how this constituted a key transition towards the emergence of semantic networks that were self-organizing, self-sustaining, and autocatalytic, and discuss how such networks replicated through social interaction. The model provides a promising approach to unraveling one of the greatest anthropological mysteries: that of why development of the Acheulean hand axe was followed by over a million years of cultural stasis.
49 - Liane Gabora 2019
Creativity is perhaps what most differentiates humans from other species. It involves the capacity to shift between divergent and convergent modes of thought in response to task demands. Divergent thought has been characterized as the kind of thinkin g needed to generate multiple solutions, while convergent thought has been characterized as the kind of thinking needed for tasks in with one solution. Divergent thought has been conceived of as reflecting on the task from unconventional perspectives, while convergent thought has been conceived of as reflecting on it from conventional perspectives. Personality traits correlated with creativity include openness to experience, tolerance of ambiguity, and self-confidence. Evidence that creativity is linked with affective disorders is mixed. Neuroscientific research using electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) suggests that creativity is associated with a loosening of cognitive control and decreased arousal. The distributed, content-addressable structure of associative memory is conducive to bringing task-relevant items to mind without the need for explicit search. Human creativity dates back to the earliest stone tools over three million years ago, with the Paleolithic marking the onset of art, science, and religion. Areas of controversy concern the relative contributions of expertise, chance, and intuition, the importance of process versus product, whether creativity is domain-specific versus domain-general, the extent to which creativity is correlated with affective disorders, and whether divergent thought entails the generation of multiple ideas or the honing of a single initially ambiguous mental representation that may manifest as different external outputs. Areas for further research include computational modeling, the biological basis of creativity, and studies that track ideation processes over time.
175 - Liane Gabora 2019
EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect th e diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors actions. The model is based on a theory of culture according to which what evolves through culture is not memes or artifacts, but the internal models of the world that give rise to them, and they evolve not through a Darwinian process of competitive exclusion but a Lamarckian process involving exchange of innovation protocols. EVOC shows an increase in mean fitness of actions over time, and an increase and then decrease in the diversity of actions. Diversity of actions is positively correlated with population size and density, and with barriers between populations. Slowly eroding borders increase fitness without sacrificing diversity by fostering specialization followed by sharing of fit actions. Introducing a leader that broadcasts its actions throughout the population increases the fitness of actions but reduces diversity of actions. Increasing the number of leaders reduces this effect. Efforts are underway to simulate the conditions under which an agent immigrating from one culture to another contributes new ideas while still fitting in.
We present a mathematical framework (referred to as Context-driven Actualization of Potential, or CAP) for describing how entities change over time under the influence of a context. The approach facilitates comparison of change of state of entities s tudied in different disciplines. Processes are seen to differ according to the degree of nondeterminism, and the degree to which they are sensitive to, internalize, and depend upon a particular context. Our analysis suggests that the dynamical evolution of a quantum entity described by the Schrodinger equation is not fundamentally different from change provoked by a measurement often referred to as collapse, but a limiting case, with only one way to collapse. The biological transition to coded replication is seen as a means of preserving structure in the fact of context-driven change, and sextual replication as a means of increasing potentiality thus enhancing diversity through interaction with context. The framework sheds light on concepts like selection and fitness, reveals how exceptional Darwinian evolution is as a means of change of state, and clarifies in what sense culture, and the creative process underlying it, are Darwinian.
In lieu of an abstract here is the first paragraph: No other species remotely approaches the human capacity for the cultural evolution of novelty that is accumulative, adaptive, and open-ended (i.e., with no a priori limit on the size or scope of pos sibilities). By culture we mean extrasomatic adaptations--including behavior and technology--that are socially rather than sexually transmitted. This chapter synthesizes research from anthropology, psychology, archaeology, and agent-based modeling into a speculative yet coherent account of two fundamental cognitive transitions underlying human cultural evolution that is consistent with contemporary psychology. While the chapter overlaps with a more technical paper on this topic (Gabora & Smith 2018), it incorporates new research and elaborates a genetic component to our overall argument. The ideas in this chapter grew out of a non-Darwinian framework for cultural evolution, referred to as the Self-other Reorganization (SOR) theory of cultural evolution (Gabora, 2013, in press; Smith, 2013), which was inspired by research on the origin and earliest stage in the evolution of life (Cornish-Bowden & Cardenas 2017; Goldenfeld, Biancalani, & Jafarpour, 2017, Vetsigian, Woese, & Goldenfeld 2006; Woese, 2002). SOR bridges psychological research on fundamental aspects of our human nature such as creativity and our proclivity to reflect on ideas from different perspectives, with the literature on evolutionary approaches to cultural evolution that aspire to synthesize the behavioral sciences much as has been done for the biological scientists. The current chapter is complementary to this effort, but less abstract; it attempts to ground the theory of cultural evolution in terms of cognitive transitions as suggested by archaeological evidence.
65 - Steve DiPaola , Liane Gabora , 2018
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like. Using an original synthesis of Deep Dream-based convolutional neural networks and cognitive based computational art rendering systems, we show how honing theory, intrinsic motivation, and the notion of a seed incident can be implemented computationally, and demonstrate their impact on the resulting generative art. Conversely, we discuss how explorations in deep learn-ing convolutional neural net generative systems can inform our understanding of human creativity. We conclude with ideas for further cross-fertilization between AI based computational creativity and psychology of creativity.
96 - Liane Gabora , Mike Unrau 2018
As both our external world and inner worlds become more complex, we are faced with more novel challenges, hardships, and duress. Creative thinking is needed to provide fresh perspectives and solve new problems.Because creativity can be conducive to a ccessing and reliving traumatic memories, emotional scars may be exacerbated by creative practices before these are transformed and released. Therefore, in preparing our youth to thrive in an increasingly unpredictable world, it could be helpful to cultivate in them an understanding of the creative process and its relationship to hardship, as well as tools and techniques for fostering not just creativity but self-awareness and mindfulness. This chapter is a review of theories of creativity through the lens of their capacity to account for the relationship between creativity and hardship, as well as the therapeutic effects of creativity. We also review theories and research on aspects of mindfulness attending to potential therapeutic effects of creativity. Drawing upon the creativity and mindfulness literatures, we sketch out what an introductory creativity and mindfulness module might look like as part of an educational curriculum designed to address the unique challenges of the 21st Century.
Immersion in a creative task can be an intimate experience. It can feel like a mystery: intangible, inexplicable, and beyond the reach of science. However, science is making exciting headway into understanding creativity. While the mind of a highly u ncreative individual consists of a collection of items accumulated through direct experience and enculturation, the mind of a creative individual is self-organizing and self-mending; thus, experiences and items of cultural knowledge are thought through from different perspectives such that they cohere together into a loosely integrated whole. The reweaving of items in memory is elicited by perturbations: experiences that increase psychological entropy because they are inconsistent with ones web of understandings. The process of responding to one perturbation often leads to other perturbations, i.e., other inconsistencies in ones web of understandings. Creative thinking often requires the capacity to shift between divergent and convergent modes of thought in response to the ever-changing demands of the creative task. Since uncreative individuals can reap the benefits of creativity by imitating creators, using their inventions, or purchasing their artworks, it is not necessary that everyone be creative. Agent based computer models of cultural evolution suggest that society functions best with a mixture of creative and uncreative individuals. The ideal ratio of creativity to imitation increases in times of change, such as we are experiencing now. Therefore it is important to educate the next generation in ways that foster creativity. The chapter concludes with suggestions for how educational systems can cultivate creativity.
The Extended Evolutionary Synthesis (EES) is beginning to fulfill the whole promise of Darwinian insight through its extension of evolutionary understanding from the biological domain to include cultural information evolution. Several decades of impo rtant foundation-laying work took a social Darwinist approach and exhibited and ecologically-deterministic elements. This is not the case with more recent developments to the evolutionary study of culture, which emphasize non-Darwinian processes such as self-organization, potentiality, and epigenetic change.
Human culture is uniquely cumulative and open-ended. Using a computational model of cultural evolution in which neural network based agents evolve ideas for actions through invention and imitation, we tested the hypothesis that this is due to the cap acity for recursive recall. We compared runs in which agents were limited to single-step actions to runs in which they used recursive recall to chain simple actions into complex ones. Chaining resulted in higher cultural diversity, open-ended generation of novelty, and no ceiling on the mean fitness of actions. Both chaining and no-chaining runs exhibited convergence on optimal actions, but without chaining this set was static while with chaining it was ever-changing. Chaining increased the ability to capitalize on the capacity for learning. These findings show that the recursive recall hypothesis provides a computationally plausible explanation of why humans alone have evolved the cultural means to transform this planet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا