ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsa tile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this arrays energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
86 - Xiangyan Li , Wei Liu , Yichun Xu 2015
Nano-crystallize materials have been known for decades to potentially owe the novel self-healing ability for radiation damage, which has been demonstrated to be especially linked to preferential occupation of interstitials at grain boundary (GB) and promoted vacancy-interstitial annihilation. A major obstacle to better understanding the healing property is the lack of an atomistic picture of the interstitial states near GBs, due to severely separation of the timescale of interstitial segregation from other events and abundance of interstitials at the GB. Here, we report a generic self-blocking effect of the interstitial cluster (SIAn) near the metallic GB in W, Mo and Fe. Upon creating a SIAn near the GB, it is immediately trapped by the GB during the GB structural relaxation and blocks there, impeding GBs further spontaneous trapping of the SIAn in the vicinity and making these SIAns stuck nearby the GB. The SIAn in the stuck state surprisingly owes an exceptionally larger number of annihilation sites with vacancies near the GB than the SIAn trapped at the GB due to maintaining its bulk configuration basically. Besides, it also has an unexpectedly long-ranged repelling interaction with the SIA in the bulk region, which may further affect the GBs trap of the SIAn. The self-blocking effect might shed light on more critical and extended role of the GB in healing radiation-damage in NCs than previously recognized the GBs limited role based on GBs trap for the SIA and resulted vacancy-SIA recombination.
117 - Lei Tan , Li-Wei Liu , Yan-Fen Sun 2010
A theoretical study is carried out for the cavity cooling of a $Lambda$-type three level atom in a high-finesse optical cavity with a weakly driven field. Analytical expressions for the friction, diffusion coefficients and the equilibrium temperature s are obtained by using the Heisenberg equations, then they are calculated numerically and shown graphically as a function of controlling parameters. For a suitable choice of these parameters, the dynamics of the cavity field interaction with the $Lambda$-type three-level atom introduces a sisyphus cooling mechanism yielding lower temperatures below the Doppler limit and allowing larger cooling rate, avoiding the problems induced by spontaneous emission.
126 - Yin Zhong , Lei Tan , Li-wei Liu 2009
We investigate the coherent transport of a single photon in coupled semiconductor microcavity waveguide,which can be controlled by in-plane excitons in quantum well embedded in the antinode of the electromagnetic field in one of the cavities. The ref lection coefficient and transmissivity for the single photon propagating in this semiconductor waveguide are obtained. It is shown that the effect of the excitons decay plays an important role in the transport properties of the single photon in this microcavity waveguide if we refer to real systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا