ترغب بنشر مسار تعليمي؟ اضغط هنا

177 - Jing Liu , Jing Cheng , Li-Bin Fu 2015
Conserved quantities are crucial in quantum physics. Here we discuss a general scenario of Hamiltonians. All the Hamiltonians within this scenario share a common conserved quantity form. For unitary parametrization processes, the characteristic opera tor of this scenario is analytically provided, as well as the corresponding quantum Fisher information (QFI). As the application of this scenario, we focus on two classes of Hamiltonians: su(2) category and canonical category. Several specific physical systems in these two categories are discussed in detail. Besides, we also calculate an alternative form of QFI in this scenario.
122 - Qiang Wang , Jie Liu , Li-Bin Fu 2015
In this paper we show that electron-positron pairs can be pumped inexhaustibly with a constant production rate from the one dimensional potential well with oscillating depth or width. Bound states embedded in the the Dirac sea can be pulled out and p ushed to the positive continuum, and become scattering states. Pauli block, which dominant the saturation of pair creation in the static super-critical potential well, can be broken by the ejection of electrons. We find that the width oscillating mode is more efficient that the depth oscillating mode. In the adiabatic limit, pair number as a function of upper boundary of the oscillating, will reveal the diving of the bound states.
By using Majoranas stellar representation, we give a clear geometrical interpretation of the topological phases of inversion-symmetric polymerized models by mapping the Bloch states of multi-band systems to Majorana stars on the Bloch sphere. While t rajectories of Majorana stars of a filled Bloch band exhibit quite different geometrical structures for topologically trivial and nontrivial phases, we further demonstrate that these structures are uniquely determined by distributions of Majorana stars of two high-symmetrical momentum states, which have different parities for topologically different states.
95 - Sheng-Chang Li , Li-Bin Fu , 2012
We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level struc ture, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.
The atom-to-molecule conversion by the technique of optical Feshbach resonance in a magnetic lattice is studied in the mean-field approximation. For the case of shallow lattice, we give the dependence of the atom-to-molecule conversion efficiency on the tunnelling strength and the atomic interaction by taking a double-well as an example. We find that one can obtain a high atom-to-molecule conversion by tuning the tunnelling and interaction strengths of the system. For the case of deep lattice, we show that the existence of lattice can improve the atom-to-molecule conversion for certain initial states.
We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme, two Rosen-Zener pulses are separated by a n intermediate holding period of variable duration and through varying the holding period we have observed nice Ramsey interference patterns in time domain. In contrast to the standard Ramsey fringes our nonlinear Ramsey patterns display diversiform structures ascribed to the interplay of the nonlinearity and asymmetry. In particular, we find that the frequency of the nonlinear Ramsey fringes exactly reflects the strength of nonlinearity as well as the asymmetry of system. Our finding suggests a potential application of the nonlinear Ramsey interferometry in calibrating the atomic parameters such as scattering length and energy spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا