ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we extend a multi-qubit benchmarking technique known as the Binned Output Generation (BOG) in order to discriminate between coherent and incoherent noise sources in the multi-qubit regime. While methods exist to discriminate coherent fro m incoherent noise at the single and few-qubit level, these methods scale poorly beyond a few qubits or must make assumptions about the form of the noise. On the other end of the spectrum, system-level benchmarking techniques exist, but fail to discriminate between coherent and incoherent noise sources. We experimentally verify the BOG against Randomized Benchmarking (RB) (the industry standard benchmarking technique) in the two-qubit regime, then apply this technique to a six qubit linear chain, a regime currently inaccessible to RB. In this experiment we inject an instantaneous coherent Z-type noise on each qubit and demonstrate that the measured coherent noise scales correctly with the magnitude of the injected noise, while the measured incoherent noise remains unchanged as expected. This demonstrates a robust technique to measure coherent errors in a variety of hardware.
We improve the quality of quantum circuits on superconducting quantum computing systems, as measured by the quantum volume, with a combination of dynamical decoupling, compiler optimizations, shorter two-qubit gates, and excited state promoted readou t. This result shows that the path to larger quantum volume systems requires the simultaneous increase of coherence, control gate fidelities, measurement fidelities, and smarter software which takes into account hardware details, thereby demonstrating the need to continue to co-design the software and hardware stack for the foreseeable future.
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term q uantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.
This document describes a quantum assembly language (QASM) called OpenQASM that is used to implement experiments with low depth quantum circuits. OpenQASM represents universal physical circuits over the CNOT plus SU(2) basis with straight-line code t hat includes measurement, reset, fast feedback, and gate subroutines. The simple text language can be written by hand or by higher level tools and may be executed on the IBM Q Experience.
We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences we present have a simple form, are relatively short, and form the building blocks of a corrected CNOT gate when also implemented on the inter-qubit exchange link. This is a key step towards enabling large-scale quantum computation in a semiconductor-based architecture by facilitating error reduction below the quantum error correction threshold for both single-qubit and multi-qubit gate operations.
In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the parameter ranges appropriate for transmon qubits in the circuit quan tum electrodynamics architecture, where the system behaves essentially as a nonlinear quantum oscillator and we analyze the quantum and semi-classical dynamics. One of the central motivations is that under strong excitation tones, the nonlinear response can lead to qubit quantum state discrimination and we present initial results for the cases when the qubit and cavity are on resonance or far off-resonance (dispersive).
Precise qubit manipulation is fundamental to quantum computing, yet experimental systems generally have stray coupling between the qubit and the environment, which hinders the necessary high-precision control. We report here the first theoretical pro gress in correcting an important class of errors stemming from fluctuations in the magnetic field gradient, in the context of the singlet-triplet spin qubit in a semiconductor double quantum dot. These errors are not amenable to correction via control techniques developed in other contexts, since here the experimenter has precise control only over the rotation rate about the z-axis of the Bloch sphere, and this rate is furthermore restricted to be positive and bounded. Despite these strong constraints, we construct simple electrical pulse sequences that, for small gradients, carry out z-axis rotations while canceling errors up to the sixth order in gradient fluctuations, and for large gradients, carry out arbitrary rotations while canceling the leading order error.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
The driven-damped Jaynes-Cummings model in the regime of strong coupling is found to exhibit a coexistence between the quantum photon blockaded state and a quasi-coherent bright state. We characterize the slow time scales and the basin of attraction of these metastable states using full quantum simulations. This form of bistability can be useful for implementing a qubit readout scheme that does not require additional circuit elements. We propose a coherent control sequence that makes use of a simple linear chirp of drive amplitude and frequency as well as qubit frequency. By optimizing the parameters of the system and the control pulse we demonstrate theoretically very high readout fidelities (>98%) and high contrast, with experimentally realistic parameters for qubits implemented in the circuit QED architecture.
We propose methods for the preparation and entanglement detection of multi-qubit GHZ states in circuit quantum electrodynamics. Using quantum trajectory simulations appropriate for the situation of a weak continuous measurement, we show that the join t dispersive readout of several qubits can be utilized for the probabilistic production of high-fidelity GHZ states. When employing a nonlinear filter on the recorded homodyne signal, the selected states are found to exhibit values of the Bell-Mermin operator exceeding 2 under realistic conditions. We discuss the potential of the dispersive readout to demonstrate a violation of the Mermin bound, and present a measurement scheme avoiding the necessity for full detector tomography.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا