ﻻ يوجد ملخص باللغة العربية
This document describes a quantum assembly language (QASM) called OpenQASM that is used to implement experiments with low depth quantum circuits. OpenQASM represents universal physical circuits over the CNOT plus SU(2) basis with straight-line code that includes measurement, reset, fast feedback, and gate subroutines. The simple text language can be written by hand or by higher level tools and may be executed on the IBM Q Experience.
The Quantum Scientific Computing Open User Testbed (QSCOUT) is a trapped-ion quantum computer testbed realized at Sandia National Laboratories on behalf of the Department of Energys Office of Science and its Advanced Scientific Computing (ASCR) progr
QSCOUT is the Quantum Scientific Computing Open User Testbed, a trapped-ion quantum computer testbed realized at Sandia National Laboratories on behalf of the Department of Energys Office of Science and its Advanced Scientific Computing (ASCR) progra
Quantum assembly languages are machine-independent languages that traditionally describe quantum computation in the circuit model. Open quantum assembly language (OpenQASM 2) was proposed as an imperative programming language for quantum circuits bas
We present a representation for linguistic structure that we call a Fock-space representation, which allows us to embed problems in language processing into small quantum devices. We further develop a formalism for understanding both classical as wel
Open quantum walks (OQWs) describe a quantum walker on an underlying graph whose dynamics is purely driven by dissipation and decoherence. Mathematically, they are formulated as completely positive trace preserving (CPTP) maps on the space of density