ترغب بنشر مسار تعليمي؟ اضغط هنا

In this note we investigate the last passage percolation model in the presence of macroscopic inhomogeneity. We analyze how this affects the scaling limit of the passage time, leading to a variational problem that provides an ODE for the deterministi c limiting shape of the maximal path. We obtain a sufficient analytical condition for uniqueness of the solution for the variational problem. Consequences for the totally asymmetric simple exclusion process are discussed.
We prove that the model of Activated Random Walks on Z^d with biased jump distribution does not fixate for any positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof u ses a new criterion for non-fixation. We provide a pathwise construction of the process, of independent interest, used in the proof of this non-fixation criterion.
253 - Leonardo T. Rolla 2015
Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.
Let $S$ be a countable set provided with a partial order and a minimal element. Consider a Markov chain on $Scup{0}$ absorbed at $0$ with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the follow ing hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on $S$, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field.
We consider a strictly convex billiard table with $C^2$ boundary, with the dynamics subjected to random perturbations. Each time the billiard ball hits the boundary its reflection angle has a random perturbation. The perturbation distribution corresp onds to the physical situation where either the scale of the surface irregularities is smaller than but comparable to the diameter of the reflected object, or the billiard ball is not perfectly rigid. We prove that for a large class of such perturbations the resulting Markov chain is uniformly ergodic, although this is not true in general.
We study an infinite system of moving particles, where each particle is of type A or B. Particles perform independent random walks at rates D_A>0 and D_B>0, and the interaction is given by mutual annihilation A+B->0. The initial condition is i.i.d. w ith finite first moment. We show that this system is site-recurrent, that is, each site is visited infinitely many times. We also generalize a lower bound on the density decay of Bramson and Lebowitz by considering a construction that handles different jump rates.
76 - Leonardo T. Rolla 2008
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto pping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا