ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - Leo Radzihovsky 2021
We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder, drives a phase transition to a distinct smectic vortex glass (SmVG) state. SmVG is characterized by an infinitely anisotropic electrical tr ansport, resistive (dissipationless) for current perpendicular to (along) columnar defects. Its positional order is also quite unusual, long-ranged with true Bragg peaks along columnar defects and logarithmically rough vortex lattice distortions with quasi-Bragg peaks transverse to columnar defects. For low temperatures and sufficiently weak columnar-only disorder, SmVG is a true topologically-ordered Bragg glass, characterized by a vanishing dislocation density. At sufficiently long scales the residual ever-present point disorder converts this state to a more standard, but highly anisotropic vortex glass.
Two dimensional crystalline membranes in isotropic embedding space exhibit a flat phase with anomalous elasticity, relevant e.g., for graphene. Here we study their thermal fluctuations in the absence of exact rotational invariance in the embedding sp ace. An example is provided by a membrane in an orientational field, tuned to a critical buckling point by application of in-plane stresses. Through a detailed analysis, we show that the transition is in a new universality class. The self-consistent screening method predicts a second order transition, with modified anomalous elasticity exponents at criticality, while the RG suggests a weakly first order transition.
110 - Leo Radzihovsky 2020
We present a gauge theory formulation of a two-dimensional quantum smectic and its relatives, motivated by their realizations in correlated quantum matter. The description gives a unified treatment of phonons and topological defects, respectively enc oded in a pair of coupled gauge fields and corresponding charges. The charges exhibit subdimensional constrained quantum dynamics and anomalously slow highly anisotropic diffusion of disclinations inside a smectic. This approach gives a transparent description of a multi-stage quantum melting transition of a two-dimensional commensurate crystal (through an incommensurate crystal - a supersolid) into a quantum smectic, that subsequently melts into a quantum nematic and isotropic superfluids, all in terms of a sequence of Higgs transitions.
We demonstrate several explicit duality mappings between elasticity of two-dimensional crystals and fracton tensor gauge theories, expanding on recent works by two of the present authors. We begin by dualizing the quantum elasticity theory of an ordi nary commensurate crystal, which maps directly onto a fracton tensor gauge theory, in a natural tensor analogue of the conventional particle-vortex duality transformation of a superfluid. The transverse and longitudinal phonons of a crystal map onto the two gapless gauge modes of the tensor gauge theory, while the topological lattice defects map onto the gauge charges, with disclinations corresponding to isolated fractons and dislocations corresponding to dipoles of fractons. We use the classical limit of this duality to make new predictions for the finite-temperature phase diagram of fracton models, and provide a simpler derivation of the Halperin-Nelson-Young theory of thermal melting of two-dimensional solids. We extend this duality to incorporate bosonic statistics, which is necessary for a description of the quantum melting transitions. We thereby derive a hybrid vector-tensor gauge theory which describes a supersolid phase, hosting both crystalline and superfluid orders. The structure of this gauge theory puts constraints on the quantum phase diagram of bosons, and also leads to the concept of symmetry enriched fracton order. We formulate the extension of these dualities to systems breaking time-reversal symmetry. We also discuss the broader implications of these dualities, such as a possible connection between fracton phases and the study of interacting topological crystalline insulators.
Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricte d mobility emerge as a result of an unusual Gauss law where electric field lines of one gauge field act as sources of charge for others. At low energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge theory. We construct the corresponding lattice model and a number of generalizations, which realize fracton phases via a condensation of string-like excitations built out of charged particles, analogous to the p-string condensation mechanism of the gapped X-cube fracton phase.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that con fines the gapless fermionic degrees of freedom to a network of one-dimensional helical domain-walls that can be localized. We identify two distinct regimes of this gapless insulating phase, a `clogged regime wherein the network localization is induced by its junctions between otherwise metallic helical domain-walls, and a `fully localized regime of localized domain-walls. The experimental signatures of these regimes are also discussed.
Motivated by the recently established duality between elasticity of crystals and a fracton tensor gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics of the underlying atoms. We thereby derive a hybrid vector-tensor gauge dual of a supersolid, which features both crystalline and superfluid order. The gauge dual describes a fracton state of matter with full dipole mobility endowed by the superfluid order, as governed by mutual axion electrodynamics between the fracton and vortex sectors of the theory, with an associated generalized Witten effect. Vortex condensation restores U(1) symmetry, confines dipoles to be subdimensional (recovering the dislocation glide constraint of a commensurate quantum crystal), and drives a phase transition between two distinct fracton phases. Meanwhile, condensation of elementary fracton dipoles and charges, respectively, provide a gauge dual description of the super-hexatic and ordinary superfluid. Consistent with conventional wisdom, in the absence of crystalline order, U(1)-symmetric phases are prohibited at zero temperature via a mechanism akin to deconfined quantum criticality.
We study a system of fermions in one spatial dimension with linearly confining interactions and short-range disorder. We focus on the zero temperature properties of this system, which we characterize using bosonization and the Gaussian variational me thod. We compute the static compressibility and ac conductivity, and thereby demonstrate that the system is incompressible, but exhibits gapless optical conductivity. This corresponds to a Mott-glass state, distinct from an Anderson and a fully gapped Mott insulator, arising due to the interplay of disorder and charge confinement. We argue that this Mott-glass phenomenology should persist to non-zero temperatures.
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topol ogical defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا