ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - John J. Tobin 2015
We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 meter MMT and Magellan telescopes. We report radial velocities for 695 stars, of whic h approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from F{H u}r{e}sz et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular ($^{13}$CO) gas. The detection of Lithium absorption and/or infrared excesses in this blue-shifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation.
43 - Fabian Heitsch 2014
A comparison of accretion and (turbulent) magnetic diffusion timescales for sheets and filaments demonstrates that dense star-forming clouds generally will -- under realistic conditions -- become supercritical due to mass accretion on timescales at l east an order of magnitude shorter than ambipolar and/or turbulent diffusion timescales. Thus, ambipolar or turbulent diffusion -- while present -- is unlikely to control the formation of cores and stars.
We present results from a high-sensitivity (60 $mu$Jy), large-scale (2.26 square degree) survey obtained with the Karl G. Jansky Very Large Array as part of the Goulds Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectiv ely. Of these, 148 are associated with previously known Young Stellar Objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous results from the Goulds Belt Survey. Our detections provide target lists for followup VLBA radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.
We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coup led with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically-thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting of $lesssim20 %$ of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly-rotating cores. Accreting and non-accreting transitional disks show different evolutionary paths on the $dot{M}-R_{rm wall}$ plane, which possibly explains the different observed properties between the two populations. However, we further find that scaling the photoevaporation rates downward by a factor of 10 makes it difficult to clear the disks on the observed timescales, showing that the precise value of the photoevaporative loss is crucial to setting the clearing times. While our results apply only to pure photoevaporative loss (plus disk accretion), there may be implications for models in which planets clear disks preferentially at radii of order 10 AU.
146 - John J. Tobin 2013
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det ect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M_sun, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed; alpha ~ 2, implying a dust opacity spectral index beta ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved Larcmin image, spectral energy distribution, and mid-infrared spectrum. The best fitting model has a disk radius of R = 125 AU, is highly flared (H ~ R^1.3), has a radial density profile rho ~ R^-2.5, and has a mass of 0.0075 M_sun. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 is comparable to disks around pre-main sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 micron-sized dust grains.
We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the dead zone). We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously-found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, $R lesssim 0.5$ AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.
96 - Zhaohuan Zhu , Lee Hartmann , 2010
We use one-dimensional two-zone time-dependent accretion disk models to study the long-term evolution of protostellar disks subject to mass addition from the collapse of a rotating cloud core. Our model consists of a constant surface density magnetic ally coupled active layer, with transport and dissipation in inactive regions only via gravitational instability. We start our simulations after a central protostar has formed, containing ~ 10% of the mass of the protostellar cloud. Subsequent evolution depends on the angular momentum of the accreting envelope. We find that disk accretion matches the infall rate early in the disk evolution because much of the inner disk is hot enough to couple to the magnetic field. Later infall reaches the disk beyond ~10 AU, and the disk undergoes outbursts of accretion in FU Ori-like events as described in Zhu et al. 2009c. If the initial cloud core is moderately rotating most of the central stars mass is built up by these outburst events. Our results suggest that the protostellar luminosity problem is eased by accretion during these FU Ori-like outbursts. After infall stops the disk enters the T Tauri phase. An outer, viscously evolving disk has structure that is in reasonable agreement with recent submillimeter studies and its surface density evolves from $Sigma propto R^{-1}$ to $R^{-1.5}$. An inner, massive belt of material-- the dead zone -- would not have been observed yet but should be seen in future high angular resolution observations by EVLA and ALMA. This high surface density belt is a generic consequence of low angular momentum transport efficiency at radii where the disk is magnetically decoupled, and would strongly affect planet formation and migration.
We have developed time-dependent models of FU Ori accretion outbursts to explore the physical properties of protostellar disks. Our two-dimensional, axisymmetric models incorporate full vertical structure with a new treatment of the radiative boundar y condition for the disk photosphere. We find that FU Ori-type outbursts can be explained by a slow accumulation of matter due to gravitational instability. Eventually this triggers the magnetorotational instability, which leads to rapid accretion. The thermal instability is triggered in the inner disk but this instability is not necessary for the outburst. An accurate disk vertical structure, including convection, is important for understanding the outburst behavior. Large convective eddies develop during the high state in the inner disk. The models are in agreement with Spitzer IRS spectra and also with peak accretion rates and decay timescales of observed outbursts, though some objects show faster rise timescale. We also propose that convection may account for the observed mild-supersonic turbulence and the short-timescale variations of FU Orionis objects.
Observations indicate that mass accretion rates onto low-mass protostars are generally lower than the rates of infall to their disks; this suggests that much of the protostellar mass must be accreted during rare, short outbursts of rapid accretion. W e explore when protostellar disk accretion is likely to be highly variable. While constant $alpha$ disks can in principle adjust their accretion rates to match infall rates, protostellar disks are unlikely to have constant $alpha$. In particular we show that neither models with angular momentum ransport due solely to the magnetorotational instability (MRI) nor ravitational instability (GI) are likely to transport disk mass at rotostellar infall rates over the large range of radii needed to move infalling envelope material down to the central protostar. We show that the MRI and GI are likely to combine to produce outbursts of rapid accretion starting at a few AU. Our analysis is consistent with the time-dependent models of Armitage, Livio, & Pringle (2001) and agrees with our observational study of the outbursting object FU Ori.
We demonstrate that the observationally inferred rapid onset of star formation after parental molecular clouds have assembled can be achieved by flow-driven cloud formation of atomic gas, using our previous three-dimensional numerical simulations. We post-process these simulations to approximate CO formation, which allows us to investigate the times at which CO becomes abundant relative to the onset of cloud collapse. We find that global gravity in a finite cloud has two crucial effects on cloud evolution. (a) Lateral collapse (perpendicular to the flows sweeping up the cloud) leads to rapidly increasing column densities above the accumulation from the one-dimensional flow. This in turn allows fast formation of CO, allowing the molecular cloud to ``appear rapidly. (b) Global gravity is required to drive the dense gas to the high pressures necessary to form solar-mass cores, in support of recent analytical models of cloud fragmentation. While the clouds still appear ``supersonically turbulent, this turbulence is relegated to playing a secondary role, in that it is to some extent a consequence of gravitational forces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا