ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactificatio n at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.
We present a code for solving the coupled Einstein-hydrodynamics equations to evolve relativistic, self-gravitating fluids. The Einstein field equations are solved in generalized harmonic coordinates on one grid using pseudospectral methods, while th e fluids are evolved on another grid using shock-capturing finite difference or finite volume techniques. We show that the code accurately evolves equilibrium stars and accretion flows. Then we simulate an equal-mass nonspinning black hole-neutron star binary, evolving through the final four orbits of inspiral, through the merger, to the final stationary black hole. The gravitational waveform can be reliably extracted from the simulation.
Numerical simulations of 15 orbits of an equal-mass binary black hole system are presented. Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5 cycles before merger, are compared with those from quasi-cir cular zero-spin post-Newtonian (PN) formulae. The cumulative phase uncertainty of these comparisons is about 0.05 radians, dominated by effects arising from the small residual spins of the black holes and the small residual orbital eccentricity in the simulations. Matching numerical results to PN waveforms early in the run yields excellent agreement (within 0.05 radians) over the first $sim 15$ cycles, thus validating the numerical simulation and establishing a regime where PN theory is accurate. In the last 15 cycles to merger, however, {em generic} time-domain Taylor approximants build up phase differences of several radians. But, apparently by coincidence, one specific post-Newtonian approximant, TaylorT4 at 3.5PN order, agrees much better with the numerical simulations, with accumulated phase differences of less than 0.05 radians over the 30-cycle waveform. Gravitational-wave amplitude comparisons are also done between numerical simulations and post-Newtonian, and the agreement depends on the post-Newtonian order of the amplitude expansion: the amplitude difference is about 6--7% for zeroth order and becomes smaller for increasing order. A newly derived 3.0PN amplitude correction improves agreement significantly ($<1%$ amplitude difference throughout most of the run, increasing to 4% near merger) over the previously known 2.5PN amplitude terms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا