ترغب بنشر مسار تعليمي؟ اضغط هنا

A decomposition of a chemical reaction network (CRN) is produced by partitioning its set of reactions. The partition induces networks, called subnetworks, that are smaller than the given CRN which, at this point, can be called parent network. A compl ex is called a common complex if it occurs in at least two subnetworks in a decomposition. A decomposition is said to be incidence independent if the image of the incidence map of the parent network is the direct sum of the images of the subnetworks incidence maps. It has been recently discovered that the complex balanced equilibria of the parent network and its subnetworks are fundamentally connected in an incidence independent decomposition. In this paper, we utilized the set of common complexes and a developed criterion to investigate decompositions incidence independence properties. A framework was also developed to analyze decomposition classes with similar structure and incidence independence properties. We identified decomposition classes that can be characterized by their sets of common complexes and studied their incidence independence. Some of these decomposition classes occur in some biological and chemical models. Finally, a sufficient condition was obtained for the complex balancing of some power law kinetic (PLK) systems with incidence independent and complex balanced decompositions. This condition led to a generalization of the Defficiency Zero Theorem for some PLK systems.
There have been recent theoretic results that provide sufficient conditions for the existence of a species displaying absolute concentration robustness (ACR) in a power law kinetic (PLK) system. One such result involves the detection of ACR among net works of high deficiency by considering a lower deficiency subnetwork with ACR as a local property. In turn, this smaller subnetwork serves as a building block for the larger ACR-possessing network. Here, with this theorem as foundation, we construct an algorithm that systematically checks ACR in a PLK system. By slightly modifying the algorithm, we also provide a procedure that identifies balanced concentration robustness (BCR), a weaker form of concentration robustness than ACR, in a PLK system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا