ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background using population-synthesis simulations. This leads to direct Bayesian inference on astrophys ical parameters. For PTAs specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including 3-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
The detection of electromagnetic counterparts to gravitational waves has great promise for the investigation of many scientific questions. It has long been hoped that in addition to providing extra, non-gravitational information about the sources of these signals, the detection of an electromagnetic signal in conjunction with a gravitational wave could aid in the analysis of the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters, such as mass and spin, that are intrinsic to the binary. In this paper, we investigate this issue by assuming a perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. However, we find only modest improvements in a few parameters --- namely the primary components spin --- and conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.
The detection of a stochastic gravitational-wave signal from the superposition of many inspiraling supermassive black holes with pulsar timing arrays (PTAs) is likely to occur within the next decade. With this detection will come the opportunity to l earn about the processes that drive black-hole-binary systems toward merger through their effects on the gravitational-wave spectrum. We use Bayesian methods to investigate the extent to which effects other than gravitational-wave emission can be distinguished using PTA observations. We show that, even in the absence of a detection, it is possible to place interesting constraints on these dynamical effects for conservative predictions of the population of tightly bound supermassive black-hole binaries. For instance, if we assume a relatively weak signal consistent with a low number of bound binaries and a low black-hole-mass to galaxy-mass correlation, we still find that a non-detection by a simulated array, with a sensitivity that should be reached in practice within a few years, disfavors gravitational-wave-dominated evolution with an odds ratio of $sim$30:1. Such a finding would suggest either that all existing astrophysical models for the population of tightly bound binaries are overly optimistic, or else that some dynamical effect other than gravitational-wave emission is actually dominating binary evolution even at the relatively high frequencies/small orbital separations probed by PTAs.
Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the stars own compactness (spontaneous scalarization) or, for binary systems, by the companions scalar hair (induced scalarization) or by the orbit al binding energy (dynamical scalarization). Scalarized stars in binaries present different conservative dynamics than in General Relativity, and can also excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity of advanced LIGO, we here show that, if neutron stars are sufficiently compact to enter the detectors sensitivity band already scalarized, then gravitational waves could place constraints at least comparable to binary pulsars. If the stars dynamically scalarize while inspiraling in band, then constraints are still possible provided the scalarization occurs sufficiently early in the inspiral, roughly below an orbital frequency of 50Hz. In performing these studies, we derive an easy-to-calculate data analysis measure, an integrated phase difference between a General Relativistic and a modified signal, that maps directly to the Bayes factor so as to determine whether a modified gravity effect is detectable. Finally, we find that custom-made templates are equally effective as model-independent, parameterized post-Einsteinian waveforms at detecting such modified gravity effects at realistic signal-to-noise ratios.
108 - Laura Sampson , Neil Cornish , 2013
Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templa tes map the waveform shapes to physical parameters, thus allowing us to produce posterior probability distributions for these parameters. However, there are attendant dangers in using highly restrictive signal priors. If strong field gravity is not accurately described by General Relativity (GR), then using GR templates may result in fundamental bias in the recovered parameters, or even worse, a complete failure to detect signals. Here we study such dangers, concentrating on three distinct possibilities. First, we show that there exist modified theories compatible with all existing tests that would fail to be detected by the LIGO/Virgo network using searches based on GR templates, but which would be detected using a one parameter post-Einsteinian extension. Second, we study modified theories that produce departures from GR that turn on suddenly at a critical frequency, producing waveforms that do not naively fit into the simplest parameterized post-Einsteinian (ppE) scheme. We show that even the simplest ppE templates are still capable of picking up these strange signals and diagnosing a departure from GR. Third, we study whether using inspiral-only ppE waveforms for signals that include merger and ringdown can lead to problems in misidentifying a GR departure. We present an easy technique that allows us to self-consistently identify the inspiral portion of the signal, and thus remove these potential biases, allowing GR tests to be performed on higher mass signals that merge within the detector band. We close by studying a parameterized waveform model that may allow us to test GR using the full inspiral-merger-ringdown signal.
104 - Laura Sampson , Nicolas Yunes , 2013
Several model-independent parameterizations of deviations from General Relativity have been developed to test Einsteins theory. Although these different parameterizations were developed for different gravitational observables, they ultimately all tes t the same underlying physics. In this paper, we develop connections between the parameterized post-Newtonian, parameterized post-Keplerian, and the parameterized post-Einsteinian frameworks, developed to carry out tests of General Relativity with Solar System, binary pulsar, and gravitational wave observations respectively. These connections allow us to use knowledge gained from one framework to inform and guide tests using the others. Relating these parameterizations and combining the results from each approach strengthens our tests of General Relativity.
We study generic tests of strong-field General Relativity using gravitational waves emitted during the inspiral of compact binaries. Previous studies have considered simple extensions to the standard post-Newtonian waveforms that differ by a single t erm in the phase. Here we improve on these studies by (i) increasing the realism of injections and (ii) determining the optimal waveform families for detecting and characterizing such signals. We construct waveforms that deviate from those in General Relativity through a series of post-Newtonian terms, and find that these higher-order terms can affect our ability to test General Relativity, in some cases by making it easier to detect a deviation, and in some cases by making it more difficult. We find that simple single-phase post-Einsteinian waveforms are sufficient for detecting deviations from General Relativity, and there is little to be gained from using more complicated models with multiple phase terms. The results found here will help guide future attempts to test General Relativity with advanced ground-based detectors.
Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong field, dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by General Relativity, analyses that are based on waveforms derived from Einsteins field equations could result in parameter biases and a loss of detection efficiency. A new class of parameterized post-Einsteinian (ppE) waveforms has been proposed to cover this eventuality. Here we apply the ppE approach to simulated data from a network of advanced ground based interferometers (aLIGO/aVirgo) and from a future spaced based interferometer (LISA). Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be severe. We also find that gravitational wave observations will beat the existing bounds on deviations from general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of parameter space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا