ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical reasoning requires forward prediction: the ability to forecast what will happen next given some initial world state. We study the performance of state-of-the-art forward-prediction models in the complex physical-reasoning tasks of the PHYRE benchmark. We do so by incorporating models that operate on object or pixel-based representations of the world into simple physical-reasoning agents. We find that forward-prediction models can improve physical-reasoning performance, particularly on complex tasks that involve many objects. However, we also find that these improvements are contingent on the test tasks being small variations of train tasks, and that generalization to completely new task templates is challenging. Surprisingly, we observe that forward predictors with better pixel accuracy do not necessarily lead to better physical-reasoning performance.Nevertheless, our best models set a new state-of-the-art on the PHYRE benchmark.
In complex tasks, such as those with large combinatorial action spaces, random exploration may be too inefficient to achieve meaningful learning progress. In this work, we use a curriculum of progressively growing action spaces to accelerate learning . We assume the environment is out of our control, but that the agent may set an internal curriculum by initially restricting its action space. Our approach uses off-policy reinforcement learning to estimate optimal value functions for multiple action spaces simultaneously and efficiently transfers data, value estimates, and state representations from restricted action spaces to the full task. We show the efficacy of our approach in proof-of-concept control tasks and on challenging large-scale StarCraft micromanagement tasks with large, multi-agent action spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا