ترغب بنشر مسار تعليمي؟ اضغط هنا

We design a Fortin operator for the lowest-order Taylor-Hood element in any dimension, which was previously constructed only in 2D. In the construction we use tangential edge bubble functions for the divergence correcting operator. This naturally lea ds to an alternative inf-sup stable reduced finite element pair. Furthermore, we provide a counterexample to the inf-sup stability and hence to existence of a Fortin operator for the $P_2$-$P_0$ and the augmented Taylor-Hood element in 3D.
This paper introduces an ultra-weak space-time DPG method for the heat equation. We prove well-posedness of the variational formulation with broken test functions and verify quasi-optimality of a practical DPG scheme. Numerical experiments visualize beneficial properties of an adaptive and parabolically scaled mesh-refinement driven by the built-in error control of the DPG method.
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{ 1,2}$-stability in two space dimensions for any polynomial degree and meshes generated by newest vertex bisection. Under realistic but conjectured assumptions on the mesh grading in three dimensions we show $W^{1,2}$-stability for all polynomial degrees. We also propose a modified bisection strategy that leads to better $W^{1,p}$-stability. Moreover, we investigate the stability of the $L^2$-projection onto Crouzeix-Raviart elements.
We study the parabolic $p$-Laplacian system in a bounded domain. We deduce optimal convergence rates for the space-time discretization based on an implicit Euler scheme in time. Our estimates are expressed in terms of Nikolskii spaces and therefore c over situations when the (gradient of) the solution has only fractional derivatives in space and time. The main novelty is that, different to all previous results, we do not assume any coupling condition between the space and time resolution $h$ and $tau$. The theoretical error analysis is complemented by numerical experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا