ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ap star HD3980 appears to be a promising roAp candidate based on its fundamental parameters, leading us to search for rapid pulsations with the VLT UV-Visual Echelle Spectrograph (UVES). A precise Hipparcos parallax and estimated temperature of 8 100K place HD3980 in the middle of the theoretical instability strip for rapidly oscillating Ap stars, about halfway through its main sequence evolution stage. The star has a strong, variable magnetic field, as is typical of the cool magnetic Ap stars. Dipole model parameters were determined from VLT observations using FORS1. From Doppler shift measurements for individual spectral lines of rare earth elements and the H-alpha line core, we find no pulsations above 20-30 m/s. This result is corroborated by inspection of lines of several other chemical elements, as well as with crosscorrelation for long spectral regions with the average spectrum as a template. Abundances of chemical elements were determined and show larger than solar abundances of rare earth elements. Further, ionisation disequilibria for the first two ionised states of Nd and Pr are detected. We also find that the star has a strong overabundance of manganese, which is typical for much hotter HgMn and other Bp stars. Line profile variability with the rotation period was detected for the majority of chemical species.
Recently, Tiwari, Chaubey, & Pandey (2007) detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6 min (2.78 mHz) and a high, modulated amplitude up to 22 mma g peak-to-peak, making this star by far the highest amplitude roAp star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD 116114. We used the FIES spectrograph at the Nordic Optical Telescope to obtain high time resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of m/s. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for rapidly oscillating Ap stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact.
Chemically peculiar A stars (Ap) are extreme examples of the interaction of atomic element diffusion processes with magnetic fields in stellar atmospheres. The rapidly oscillating Ap stars provide a means for studying these processes in 3D and are at the same time important for studying the pulsation excitation mechanism in A stars. As part of the first comprehensive, uniform, high resolution spectroscopic survey of Ap stars, which we are conducting in the southern hemisphere with the Michigan Spectral Catalogues as the basis of target selection, we report here the discovery of 17 new magnetic Ap stars having spectroscopically resolved Zeeman components from which we derive magnetic field moduli in the range 3 - 30 kG. Among these are 1) the current second-strongest known magnetic A star, 2) a double-lined Ap binary with a magnetic component and 3) an A star with particularly peculiar and variable abundances. Polarimetry of these stars is needed to constrain their field geometries and to determine their rotation periods. We have also obtained an additional measurement of the magnetic field of the Ap star HD 92499.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا